
From: Mike Ounsworth <mike.ounsworth@entrust.com> via pqc-forum <pqc-forum@list.nist.gov>
To: LAMPS <spasm@ietf.org>, cfrg@irtf.org, pqc-forum <pqc-forum@list.nist.gov>,

jakemas@amazon.com, kpanos@amazon.com, sean@ssn3rd.com, bas@westerbaan.name
Subject: [pqc-forum] Whether to hash-then-sign with Dilithium and Falcon?
Date: Wednesday, August 17, 2022 01:27:19 PM ET

Hi Jake, Panos, Sean, Bas,

We notice that your IETF draft-massimo-lamps-pq-sig-certificates-00 has the following

security consideration:

> Within the hash-then-sign paradigm, hash functions are used as a domain restrictor

over the message to be signed. By pre-hashing, the onus of resistance to

> existential forgeries becomes heavily reliant on the collision-resistance of the

hash function in use. As well as this security goal, the hash-then-sign paradigm also

> has the ability to improve performance by reducing the size of signed messages. As

a corollary, hashing remains mandatory even for short messages and assigns a

> further computational requirement onto the verifier. This makes the performance of

hash-then-sign schemes more consistent, but not necessarily more efficient.

> Dilithium diverges from the hash-then-sign paradigm by hashing the message during

the signing procedure (at the point in which the challenge polynomial).

> However, due to the fact that Dilithium signatures may require the signing

procedure to be repeated several times for a signature to be produced, Dilithium

> implementations can make use of pre-hashing the message to prevent rehashing with

each attempt.

First, quoting from the Dilithium NIST Round 3 submission documents:

> Since our signing procedure may need to

> be repeated several times until a signature is produced, we also append a counter

in order

> to make the SHAKE-256 output differ with each signing attempt of the same message.

So it seems like the Dilithium designers explicitly want the hash to differ across

repeated attempts.

Page 1 of 4

mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:jakemas@amazon.com
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name

Second, we had a similar discussion within the context of composite signatures when

figuring out how to combine Dilithium and Falcon with ECDSA and RSA. We came out with

a different conclusion; that hash-then-sign reduces the security properties of

Dilithium and Falcon down to the collision resistance of the hash function used to

pre-hash.

We would like community opinion on this.

Here's the Security Consideration text that we're working on:

In the hash-then-sign paradigm, the message to be signed is hashed externally to the

signature primitive, and then the hash value is signed.

The hash-then-sign paradigm is required, for example, with RSA signatures in order to

sign messages larger than the RSA modulus. Hash-then-sign also gives performance and

bandwidth benefits, for example, when the signature is performed by a networked

cryptographic appliance since you only need to send a small hash value rather than

streaming the entire message.

With Dilithium and Falcon signatures it is not recommended to pre-hash for the

following reasons:

The Dilithium construction includes

~~~

Sign(sk,M):

10: mu \in {0, 1}^384 := CRH(tr || M)

~~~

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 2 of 4

where `CRH` is any collision-resistant hash function and `tr` is a component of the

secret key. This provides strong security against pre-computed collision attacks

since an attacker has no a-priori knowledge of `r` and provides per-key hash-domain

separation of the message to be signed.

The Falcon construction includes

~~~

Sign (m, sk, beta^2):

1: r <- {0, 1}^320 uniformly

2: c <- HashToPoint(r || m, q, n)

~~~

where `HashToPoint` is a SHAKE-256-based construct. This provides strong security

against pre-computed collision attacks since an attacker has no a-priori knowledge of

`r` and provides per-signature hash-domain separation of the message to be signed.

If the message to be signed is pre-hashed, for example `m0 = SHA256(m)` and then m0

provided to Dilithium or Falcon to sign, then you have re-introduced the collision

problem since two messages m1 and m2 where SHA256(m1) == SHA256(m2) hash value will

result a single Falcon or Dilithium signature value which is simultaneously valid for

both m1 and m2. This removes the extra collision resistance built in to the Dilithium

and Falcon primitives and reduces it to the collision resistance strength of the

underlying hash function. For this reason it is in general not recommended to pre-

hash when using Dilithium or Falcon except in cases where the implementor is

comfortable with this reduction in security.

Therefore, for the purpose of interoperability of composite signatures,

implementations MUST NOT pre-hash messages for Dilithium and Falcon. If pre-hashed

versions of these signatures are desired, then separate signature algorithms will

need to be defined.

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 3 of 4

Third, I can imagine that some applications (like TLS) will want to use non-pre-

hashed versions of Dilithium and Falcon, but other applications (like code-signing)

would prefer pre-hashed versions. These are not interoperable with each other. Is

NIST planning to produce algorithm definitions, OIDs, Codepoints, etc, for both

versions?

Mike Ounsworth

Software Security Architect, Entrust

John Gray

Sr Prin Software Developer, Entrust

Any email and files/attachments transmitted with it are confidential and are intended

solely for the use of the individual or entity to whom they are addressed. If this

message has been sent to you in error, you must not copy, distribute or disclose of

the information it contains. Please notify Entrust immediately and delete the message

from your system.

--

You received this message because you are subscribed to the Google Groups "pqc-forum"

group.

To unsubscribe from this group and stop receiving emails from it, send an email to

pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/

msgid/pqc-forum/

CH0PR11MB5739393F19DD5282E3D7EF549F6A9%40CH0PR11MB5739.namprd11.prod.outlook.com.

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 4 of 4

From: Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com> via pqc-forum <pqc-forum@list.nist.gov>
To: Mike Ounsworth <mike.ounsworth@entrust.com>, LAMPS <spasm@ietf.org>, cfrg@irtf.org, pqc-

forum <pqc-forum@list.nist.gov>, jakemas@amazon.com, kpanos@amazon.com,
sean@ssn3rd.com, bas@westerbaan.name

Subject: [pqc-forum] RE: Whether to hash-then-sign with Dilithium and Falcon?
Date: Wednesday, August 17, 2022 01:50:24 PM ET

> -----Original Message-----

> From: 'Mike Ounsworth' via pqc-forum <pqc-forum@list.nist.gov>

> Sent: Wednesday, August 17, 2022 1:27 PM

> To: 'LAMPS' <spasm@ietf.org>; cfrg@irtf.org; pqc-forum <pqc-

> forum@list.nist.gov>; jakemas@amazon.com; kpanos@amazon.com;

> sean@ssn3rd.com; bas@westerbaan.name

> Subject: [pqc-forum] Whether to hash-then-sign with Dilithium and Falcon?

>

> Hi Jake, Panos, Sean, Bas,

>

>

> We notice that your IETF draft-massimo-lamps-pq-sig-certificates-00 has the

> following security consideration:

>

> > Within the hash-then-sign paradigm, hash functions are used as a

> > domain restrictor over the message to be signed. By pre-hashing, the

> > onus of resistance to existential forgeries becomes heavily reliant on

> > the collision-resistance of the hash function in use. As well as this security

> goal, the hash-then-sign paradigm also has the ability to improve

> performance by reducing the size of signed messages. As a corollary, hashing

> remains mandatory even for short messages and assigns a further

> computational requirement onto the verifier. This makes the performance of

> hash-then-sign schemes more consistent, but not necessarily more efficient.

> > Dilithium diverges from the hash-then-sign paradigm by hashing the

> message during the signing procedure (at the point in which the challenge

> polynomial).

> > However, due to the fact that Dilithium signatures may require the

> > signing procedure to be repeated several times for a signature to be

> produced, Dilithium implementations can make use of pre-hashing the

> message to prevent rehashing with each attempt.

>

Page 1 of 5

mailto:sfluhrer@cisco.com
mailto:pqc-forum@list.nist.gov
mailto:mike.ounsworth@entrust.com
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:jakemas@amazon.com
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name

>

> First, quoting from the Dilithium NIST Round 3 submission documents:

>

> > Since our signing procedure may need to be repeated several times

> > until a signature is produced, we also append a counter in order to

> > make the SHAKE-256 output differ with each signing attempt of the same

> message.

>

> So it seems like the Dilithium designers explicitly want the hash to differ

> across repeated attempts.

>

Hmmm, I don't see that in Dilithium; are they referring to the internal ExpandMask

function? That isn't applied to the input message.

In any case, it's easy to derive SHAKE(M || 1), SHAKE(M || 2), ... without

multiple passes through M; you compute the partial SHAKE state after process M, and

then apply that partial state to 1, 2, ...

>

>

> Second, we had a similar discussion within the context of composite

> signatures when figuring out how to combine Dilithium and Falcon with

> ECDSA and RSA. We came out with a different conclusion; that hash-then-

> sign reduces the security properties of Dilithium and Falcon down to the

> collision resistance of the hash function used to pre-hash.

>

> We would like community opinion on this.

>

>

> Here's the Security Consideration text that we're working on:

>

>

>

>

> In the hash-then-sign paradigm, the message to be signed is hashed

> externally to the signature primitive, and then the hash value is signed.

Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>

Page 2 of 5

>

> The hash-then-sign paradigm is required, for example, with RSA signatures in

> order to sign messages larger than the RSA modulus. Hash-then-sign also

> gives performance and bandwidth benefits, for example, when the signature

> is performed by a networked cryptographic appliance since you only need to

> send a small hash value rather than streaming the entire message.

>

> With Dilithium and Falcon signatures it is not recommended to pre-hash for

> the following reasons:

>

>

> The Dilithium construction includes

>

> ~~~

> Sign(sk,M):

> 10: mu \in {0, 1}^384 := CRH(tr || M)

> ~~~

>

> where `CRH` is any collision-resistant hash function and `tr` is a component

> of the secret key.

A hash of the public key, actually; see line 7 of the key generation process (which

explicitly computes it from the components of the public key) - Dilithium stores it

in the private key so the signer doesn't need to recompute it every time.

> This provides strong security against pre-computed

> collision attacks since an attacker has no a-priori knowledge of `r` and

> provides per-key hash-domain separation of the message to be signed.

Rather, it limits the usability of any found collision to a specific public key;

however it does nothing to frustrate a collision attack against a specific public

key.

Now, it does probably add a constant factor to any attack that searches for a

simultaneous collision between the hash that RSA/ECDSA uses (without the prepend) and

the hash that Dilithium uses (with the known prepend) - I would hesitate to give a

value to that constant factor, but it is likely not large.

Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>

Page 3 of 5

>

>

> The Falcon construction includes

>

> ~~~

> Sign (m, sk, beta^2):

> 1: r <- {0, 1}^320 uniformly

> 2: c <- HashToPoint(r || m, q, n)

> ~~~

>

> where `HashToPoint` is a SHAKE-256-based construct. This provides strong

> security against pre-computed collision attacks since an attacker has no a-

> priori knowledge of `r` and provides per-signature hash-domain separation

> of the message to be signed.

>

> If the message to be signed is pre-hashed, for example `m0 = SHA256(m)`

> and then m0 provided to Dilithium or Falcon to sign, then you have re-

> introduced the collision problem since two messages m1 and m2 where

> SHA256(m1) == SHA256(m2) hash value will result a single Falcon or Dilithium

> signature value which is simultaneously valid for both m1 and m2. This

> removes the extra collision resistance built in to the Dilithium and Falcon

> primitives and reduces it to the collision resistance strength of the underlying

> hash function. For this reason it is in general not recommended to pre-hash

> when using Dilithium or Falcon except in cases where the implementor is

> comfortable with this reduction in security.

>

> Therefore, for the purpose of interoperability of composite signatures,

> implementations MUST NOT pre-hash messages for Dilithium and Falcon. If

> pre-hashed versions of these signatures are desired, then separate signature

> algorithms will need to be defined.

>

>

--

You received this message because you are subscribed to the Google Groups "pqc-forum"

group.

Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>

Page 4 of 5

To unsubscribe from this group and stop receiving emails from it, send an email to

pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/

msgid/pqc-forum/

CH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9%40CH0PR11MB5444.namprd11.prod.outlook.com.

Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>

Page 5 of 5

From: Mike Ounsworth <mike.ounsworth@entrust.com> via pqc-forum <pqc-forum@list.nist.gov>
To: LAMPS <spasm@ietf.org>, cfrg@irtf.org, pqc-forum <pqc-forum@list.nist.gov>,

jakemas@amazon.com, kpanos@amazon.com, sean@ssn3rd.com, bas@westerbaan.name
Subject: [pqc-forum] RE: Whether to hash-then-sign with Dilithium and Falcon?
Date: Wednesday, August 17, 2022 02:42:52 PM ET

I want to break out and expand our third point as it is actually a question to NIST

and not to the IETF authors.

> Third, I can imagine that some applications (like TLS) will want to use non-pre-

hashed versions of Dilithium and Falcon, but other applications (like code-signing)

would prefer pre-hashed versions. These are not interoperable with each other. Is

NIST planning to produce algorithm definitions, OIDs, Codepoints, etc, for both

versions?

Expanding on the code-signing example: the messages to be signed can be very large;

consider a several GB firmware image. Assuming our understanding below is correct, a

direct-sign algorithm would require the entire thing to be streamed to a network HSM

for signing and to a TPM for verification. Conversely code-signing environments often

include counter-signatures from Time Stamping Authorities which protect against

future discovery of collision attacks against the hash function -- as an example,

Windows still accepts RSA-SHA1 signatures produced before SHA1 was deprecated. I can

imagine that the code-signing community will decide that the performance gains of

hash-then-sign outweigh the security loss.

So, will NIST standardize both direct-sign and some variant of hash-then-sign for PQC

signature primitives?

Mike Ounsworth

-----Original Message-----

From: 'Mike Ounsworth' via pqc-forum <pqc-forum@list.nist.gov>

Sent: August 17, 2022 12:27 PM

To: 'LAMPS' <spasm@ietf.org>; cfrg@irtf.org; pqc-forum <pqc-forum@list.nist.gov>;

jakemas@amazon.com; kpanos@amazon.com; sean@ssn3rd.com; bas@westerbaan.name

Subject: [EXTERNAL] [pqc-forum] Whether to hash-then-sign with Dilithium and Falcon?

Page 1 of 6

mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:jakemas@amazon.com
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name

WARNING: This email originated outside of Entrust.

DO NOT CLICK links or attachments unless you trust the sender and know the content is

safe.

__

Hi Jake, Panos, Sean, Bas,

We notice that your IETF draft-massimo-lamps-pq-sig-certificates-00 has the following

security consideration:

> Within the hash-then-sign paradigm, hash functions are used as a

> domain restrictor over the message to be signed. By pre-hashing, the

> onus of resistance to existential forgeries becomes heavily reliant on

> the collision-resistance of the hash function in use. As well as this security

goal, the hash-then-sign paradigm also has the ability to improve performance by

reducing the size of signed messages. As a corollary, hashing remains mandatory even

for short messages and assigns a further computational requirement onto the verifier.

This makes the performance of hash-then-sign schemes more consistent, but not

necessarily more efficient.

> Dilithium diverges from the hash-then-sign paradigm by hashing the message during

the signing procedure (at the point in which the challenge polynomial).

> However, due to the fact that Dilithium signatures may require the

> signing procedure to be repeated several times for a signature to be produced,

Dilithium implementations can make use of pre-hashing the message to prevent

rehashing with each attempt.

First, quoting from the Dilithium NIST Round 3 submission documents:

> Since our signing procedure may need to be repeated several times

> until a signature is produced, we also append a counter in order to

> make the SHAKE-256 output differ with each signing attempt of the same message.

So it seems like the Dilithium designers explicitly want the hash to differ across

repeated attempts.

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 2 of 6

Second, we had a similar discussion within the context of composite signatures when

figuring out how to combine Dilithium and Falcon with ECDSA and RSA. We came out with

a different conclusion; that hash-then-sign reduces the security properties of

Dilithium and Falcon down to the collision resistance of the hash function used to

pre-hash.

We would like community opinion on this.

Here's the Security Consideration text that we're working on:

In the hash-then-sign paradigm, the message to be signed is hashed externally to the

signature primitive, and then the hash value is signed.

The hash-then-sign paradigm is required, for example, with RSA signatures in order to

sign messages larger than the RSA modulus. Hash-then-sign also gives performance and

bandwidth benefits, for example, when the signature is performed by a networked

cryptographic appliance since you only need to send a small hash value rather than

streaming the entire message.

With Dilithium and Falcon signatures it is not recommended to pre-hash for the

following reasons:

The Dilithium construction includes

~~~

Sign(sk,M):

10: mu \in {0, 1}^384 := CRH(tr || M)

~~~

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 3 of 6

where `CRH` is any collision-resistant hash function and `tr` is a component of the

secret key. This provides strong security against pre-computed collision attacks

since an attacker has no a-priori knowledge of `r` and provides per-key hash-domain

separation of the message to be signed.

The Falcon construction includes

~~~

Sign (m, sk, beta^2):

1: r <- {0, 1}^320 uniformly

2: c <- HashToPoint(r || m, q, n)

~~~

where `HashToPoint` is a SHAKE-256-based construct. This provides strong security

against pre-computed collision attacks since an attacker has no a-priori knowledge of

`r` and provides per-signature hash-domain separation of the message to be signed.

If the message to be signed is pre-hashed, for example `m0 = SHA256(m)` and then m0

provided to Dilithium or Falcon to sign, then you have re-introduced the collision

problem since two messages m1 and m2 where SHA256(m1) == SHA256(m2) hash value will

result a single Falcon or Dilithium signature value which is simultaneously valid for

both m1 and m2. This removes the extra collision resistance built in to the Dilithium

and Falcon primitives and reduces it to the collision resistance strength of the

underlying hash function. For this reason it is in general not recommended to pre-

hash when using Dilithium or Falcon except in cases where the implementor is

comfortable with this reduction in security.

Therefore, for the purpose of interoperability of composite signatures,

implementations MUST NOT pre-hash messages for Dilithium and Falcon. If pre-hashed

versions of these signatures are desired, then separate signature algorithms will

need to be defined.

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 4 of 6

Third, I can imagine that some applications (like TLS) will want to use non-pre-

hashed versions of Dilithium and Falcon, but other applications (like code-signing)

would prefer pre-hashed versions. These are not interoperable with each other. Is

NIST planning to produce algorithm definitions, OIDs, Codepoints, etc, for both

versions?

Mike Ounsworth

Software Security Architect, Entrust

John Gray

Sr Prin Software Developer, Entrust

Any email and files/attachments transmitted with it are confidential and are intended

solely for the use of the individual or entity to whom they are addressed. If this

message has been sent to you in error, you must not copy, distribute or disclose of

the information it contains. Please notify Entrust immediately and delete the message

from your system.

--

You received this message because you are subscribed to the Google Groups "pqc-forum"

group.

To unsubscribe from this group and stop receiving emails from it, send an email to

pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://

gcc02.safelinks.protection.outlook.com/?

url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2F%2Fgroups.google.com%2Fa%2Flist.

nist.gov%2Fd%2Fmsgid%2Fpqc-

forum%2FCH0PR11MB5739393F19DD5282E3D7EF549F6A9*40CH0PR11MB5739.namprd11.prod.outlook.

com__%3BJQ!!FJ-Y8qCqXTj2!cQPnK1SOIs1r8xM1OYWVawbIa-

o1FJJaQBpP6v4DaGtIq7GF7FJZwl4KqY3locbLDLUiMJJ0TDa7D8fgscKx8lKgHPb5%24&data=05%7C0

1%7Cyi-

kai.liu%40nist.gov%7C70b1a1eb797e4dbfc5dc08da8080499c%7C2ab5d82fd8fa4797a93e054655c61

dec%7C1%7C0%7C637963585726411914%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoi

V2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=hssoF%2FKhNJN47ogOVr

1U8IZIYMEc4wSd%2F6vnNf0ULsY%3D&reserved=0 .

--

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 5 of 6

You received this message because you are subscribed to the Google Groups "pqc-forum"

group.

To unsubscribe from this group and stop receiving emails from it, send an email to

pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/

msgid/pqc-forum/

CH0PR11MB5739557425DD3FDE5812D8479F6A9%40CH0PR11MB5739.namprd11.prod.outlook.com.

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 6 of 6

From: Massimo, Jake <jakemas@amazon.com> via pqc-forum <pqc-forum@list.nist.gov>
To: Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>, Mike Ounsworth <mike.ounsworth@entrust.com>,

LAMPS <spasm@ietf.org>, cfrg@irtf.org, pqc-forum <pqc-forum@list.nist.gov>, Kampanakis,
Panos <kpanos@amazon.com>, sean@ssn3rd.com, bas@westerbaan.name

Subject: Re: [pqc-forum] RE: Whether to hash-then-sign with Dilithium and Falcon?
Date: Wednesday, August 17, 2022 03:40:39 PM ET

Thanks Mike, Scott.

I've added to the github repo so we can track discussions on this topic https://

github.com/jakemas/draft-massimo-pq-pkix-00/issues/23

 >> So it seems like the Dilithium designers explicitly want the hash to differ

 >> across repeated attempts.

 >>

 > Hmmm, I don't see that in Dilithium; are they referring to the internal

ExpandMask function? That isn't applied to the input message.

 >In any case, it's easy to derive SHAKE(M || 1), SHAKE(M || 2), ... without

multiple passes through M; you compute the partial SHAKE state after process M, and

then apply that partial state to 1, 2, ...

I think we are referring to different parts of the signing process here. For

reference, my security consideration was referring to page 4 of the Dilithium spec

that states:

"Our full scheme in Fig. 4 also makes use of basic optimizations such as pre-hashing

the message M so as to not rehash it with every signing attempt." and Figure 4

itself.

It was my understanding that the signing procedure may need to be repeated several

times to produce a signature, and thus pre-hashing would prevent the need to

individually hash the input message with each attempt. I believe the desired

differing of the hash you mentioned is within the internals of the signing procedure

and not on the input message itself.

Page 1 of 7

mailto:jakemas@amazon.com
mailto:pqc-forum@list.nist.gov
mailto:sfluhrer@cisco.com
mailto:mike.ounsworth@entrust.com
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name

 >> Third, I can imagine that some applications (like TLS) will want to use non-

pre-hashed versions of Dilithium and Falcon, but other applications (like code-

signing) would prefer pre-hashed versions. These are not interoperable with each

other. Is NIST planning to produce algorithm definitions, OIDs, Codepoints, etc, for

both versions?

 >Expanding on the code-signing example: the messages to be signed can be very

large; consider a several GB firmware image. Assuming our understanding below is

correct, a direct-sign algorithm would require the entire thing to be streamed to a

network HSM for signing and to a TPM for verification. Conversely code-signing

environments often include counter-signatures from Time Stamping Authorities which

protect against future discovery of collision attacks against the hash function -- as

an example, Windows still accepts RSA-SHA1 signatures produced before SHA1 was

deprecated. I can imagine that the code-signing community will decide that the

performance gains of hash-then-sign outweigh the security loss.

 >So, will NIST standardize both direct-sign and some variant of hash-then-sign for

PQC signature primitives?

I do agree that there may be optimizations that users may wish to make dependent on

the context, i.e., hash-then-sign vs direct-sign. It's for this reason I tried to

give an overview of the security of each option in the draft, but ultimately leave

that up to the user. It is a good point regarding NISTs perspective on what should be

explicitly standardized here.

 >> This provides strong security against pre-computed

 >> collision attacks since an attacker has no a-priori knowledge of `r` and

 >> provides per-key hash-domain separation of the message to be signed.

 >Rather, it limits the usability of any found collision to a specific public key;

however it does nothing to frustrate a collision attack against a specific public

key.

Right, more details on the advantages of message binding on the PQC-forum from C.

Peikert's https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/eAaiJO1qzkA/m/

K66R_ftNBwAJ. It was this discussion I was trying to encompass in the draft.

Cheers,

Jake

Massimo, Jake <jakemas@amazon.com>

Page 2 of 7

On 17/08/2022, 10:51, "'Scott Fluhrer (sfluhrer)' via pqc-forum" <pqc-

forum@list.nist.gov> wrote:

 CAUTION: This email originated from outside of the organization. Do not click

links or open attachments unless you can confirm the sender and know the content is

safe.

 > -----Original Message-----

 > From: 'Mike Ounsworth' via pqc-forum <pqc-forum@list.nist.gov>

 > Sent: Wednesday, August 17, 2022 1:27 PM

 > To: 'LAMPS' <spasm@ietf.org>; cfrg@irtf.org; pqc-forum <pqc-

 > forum@list.nist.gov>; jakemas@amazon.com; kpanos@amazon.com;

 > sean@ssn3rd.com; bas@westerbaan.name

 > Subject: [pqc-forum] Whether to hash-then-sign with Dilithium and Falcon?

 >

 > Hi Jake, Panos, Sean, Bas,

 >

 >

 > We notice that your IETF draft-massimo-lamps-pq-sig-certificates-00 has the

 > following security consideration:

 >

 > > Within the hash-then-sign paradigm, hash functions are used as a

 > > domain restrictor over the message to be signed. By pre-hashing, the

 > > onus of resistance to existential forgeries becomes heavily reliant on

 > > the collision-resistance of the hash function in use. As well as this

security

 > goal, the hash-then-sign paradigm also has the ability to improve

 > performance by reducing the size of signed messages. As a corollary, hashing

 > remains mandatory even for short messages and assigns a further

 > computational requirement onto the verifier. This makes the performance of

 > hash-then-sign schemes more consistent, but not necessarily more efficient.

Massimo, Jake <jakemas@amazon.com>

Page 3 of 7

 > > Dilithium diverges from the hash-then-sign paradigm by hashing the

 > message during the signing procedure (at the point in which the challenge

 > polynomial).

 > > However, due to the fact that Dilithium signatures may require the

 > > signing procedure to be repeated several times for a signature to be

 > produced, Dilithium implementations can make use of pre-hashing the

 > message to prevent rehashing with each attempt.

 >

 >

 > First, quoting from the Dilithium NIST Round 3 submission documents:

 >

 > > Since our signing procedure may need to be repeated several times

 > > until a signature is produced, we also append a counter in order to

 > > make the SHAKE-256 output differ with each signing attempt of the same

 > message.

 >

 > So it seems like the Dilithium designers explicitly want the hash to differ

 > across repeated attempts.

 >

 Hmmm, I don't see that in Dilithium; are they referring to the internal

ExpandMask function? That isn't applied to the input message.

 In any case, it's easy to derive SHAKE(M || 1), SHAKE(M || 2), ... without

multiple passes through M; you compute the partial SHAKE state after process M, and

then apply that partial state to 1, 2, ...

 >

 >

 > Second, we had a similar discussion within the context of composite

 > signatures when figuring out how to combine Dilithium and Falcon with

 > ECDSA and RSA. We came out with a different conclusion; that hash-then-

 > sign reduces the security properties of Dilithium and Falcon down to the

 > collision resistance of the hash function used to pre-hash.

 >

 > We would like community opinion on this.

 >

Massimo, Jake <jakemas@amazon.com>

Page 4 of 7

 >

 > Here's the Security Consideration text that we're working on:

 >

 >

 >

 >

 > In the hash-then-sign paradigm, the message to be signed is hashed

 > externally to the signature primitive, and then the hash value is signed.

 >

 > The hash-then-sign paradigm is required, for example, with RSA signatures in

 > order to sign messages larger than the RSA modulus. Hash-then-sign also

 > gives performance and bandwidth benefits, for example, when the signature

 > is performed by a networked cryptographic appliance since you only need to

 > send a small hash value rather than streaming the entire message.

 >

 > With Dilithium and Falcon signatures it is not recommended to pre-hash for

 > the following reasons:

 >

 >

 > The Dilithium construction includes

 >

 > ~~~

 > Sign(sk,M):

 > 10: mu \in {0, 1}^384 := CRH(tr || M)

 > ~~~

 >

 > where `CRH` is any collision-resistant hash function and `tr` is a component

 > of the secret key.

 A hash of the public key, actually; see line 7 of the key generation process

(which explicitly computes it from the components of the public key) - Dilithium

stores it in the private key so the signer doesn't need to recompute it every time.

 > This provides strong security against pre-computed

 > collision attacks since an attacker has no a-priori knowledge of `r` and

 > provides per-key hash-domain separation of the message to be signed.

Massimo, Jake <jakemas@amazon.com>

Page 5 of 7

 Rather, it limits the usability of any found collision to a specific public key;

however it does nothing to frustrate a collision attack against a specific public

key.

 Now, it does probably add a constant factor to any attack that searches for a

simultaneous collision between the hash that RSA/ECDSA uses (without the prepend) and

the hash that Dilithium uses (with the known prepend) - I would hesitate to give a

value to that constant factor, but it is likely not large.

 >

 >

 > The Falcon construction includes

 >

 > ~~~

 > Sign (m, sk, beta^2):

 > 1: r <- {0, 1}^320 uniformly

 > 2: c <- HashToPoint(r || m, q, n)

 > ~~~

 >

 > where `HashToPoint` is a SHAKE-256-based construct. This provides strong

 > security against pre-computed collision attacks since an attacker has no a-

 > priori knowledge of `r` and provides per-signature hash-domain separation

 > of the message to be signed.

 >

 > If the message to be signed is pre-hashed, for example `m0 = SHA256(m)`

 > and then m0 provided to Dilithium or Falcon to sign, then you have re-

 > introduced the collision problem since two messages m1 and m2 where

 > SHA256(m1) == SHA256(m2) hash value will result a single Falcon or Dilithium

 > signature value which is simultaneously valid for both m1 and m2. This

 > removes the extra collision resistance built in to the Dilithium and Falcon

 > primitives and reduces it to the collision resistance strength of the

underlying

 > hash function. For this reason it is in general not recommended to pre-hash

 > when using Dilithium or Falcon except in cases where the implementor is

 > comfortable with this reduction in security.

 >

 > Therefore, for the purpose of interoperability of composite signatures,

 > implementations MUST NOT pre-hash messages for Dilithium and Falcon. If

Massimo, Jake <jakemas@amazon.com>

Page 6 of 7

 > pre-hashed versions of these signatures are desired, then separate signature

 > algorithms will need to be defined.

 >

 >

 --

 You received this message because you are subscribed to the Google Groups "pqc-

forum" group.

 To unsubscribe from this group and stop receiving emails from it, send an email

to pqc-forum+unsubscribe@list.nist.gov.

 To view this discussion on the web visit https://groups.google.com/a/

list.nist.gov/d/msgid/pqc-forum/

CH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9%40CH0PR11MB5444.namprd11.prod.outlook.com.

--

You received this message because you are subscribed to the Google Groups "pqc-forum"

group.

To unsubscribe from this group and stop receiving emails from it, send an email to

pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/

msgid/pqc-forum/88358933-A540-4000-9C7D-D248F670122F%40amazon.com.

Massimo, Jake <jakemas@amazon.com>

Page 7 of 7

From: Tadahiko Ito <tadahiko.ito.public@gmail.com> via Spasm <spasm-bounces@ietf.org>
To: Massimo, Jake <jakemas=40amazon.com@dmarc.ietf.org>
CC: Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>, Mike Ounsworth

<mike.ounsworth@entrust.com>, LAMPS <spasm@ietf.org>, cfrg@irtf.org, pqc-forum <pqc-
forum@list.nist.gov>, Kampanakis, Panos <kpanos@amazon.com>, sean@ssn3rd.com,
bas@westerbaan.name

Subject: Re: [lamps] [CFRG] [pqc-forum] RE: Whether to hash-then-sign with Dilithium and Falcon?
Date: Thursday, August 18, 2022 01:13:44 AM ET
Attachments: ATT00001.txt

> It was my understanding that the signing procedure may need to be
> repeated several times to produce a signature, and thus pre-hashing
> would prevent the need to individually hash the input message with
> each attempt.

When we were trying to implement PQC in functional module of HSM for our use case, It was pain. I
believe HSM vender will implement much better, but It may still have problem.
Hash then Sign was great that we can separate key management (and signing) function from data
management (and hashing) function. It seems crypto module producer might need to implement
scheduling function for data management function. I far those problems decrease efficiency, but we
might need to care that.

>> (…) Assuming our understanding below is correct, a direct-sign algorithm
>> would require the entire thing to be streamed to a network HSM for signing
>> and to a TPM for verification.
Currently, I am doubting that we might not have that many protocols with direct-signing algorithm
which would sign intolerable large data. For those protocol with direct-signing, I believe we can have
several approaches.

1)Sign to smaller compressed data (e.g. by using CMS) instead of raw data.
It was biggest feedback I got so far, when I told about those stuff on IETF last year.
For this option, Users may need to change data structure, but If we cannot find that much direct-
signing use case, it might be reasonable. Direct-signing use case holders may need to take other
option.
In addition, when I ask our engineer for our use case, he said that was long recognized issue, and it
might be good chance to do so.

2)Use pre-hash
Users do not need to change data structure, but we may meet interoperability challenge.

3)Separate PQC into key management function and data management function,
I tried, but I believe It was not good choice. <https://eprint.iacr.org/2020/990.pdf> (I am sorry that we

Page 1 of 8

mailto:tadahiko.ito.public@gmail.com
mailto:spasm-bounces@ietf.org
mailto:jakemas=40amazon.com@dmarc.ietf.org
mailto:sfluhrer@cisco.com
mailto:mike.ounsworth@entrust.com
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name

Spasm mailing list

Spasm@ietf.org

https://www.ietf.org/mailman/listinfo/spasm

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Feprint.iacr.org%2F2020%2F990.pdf&data=05%7C01%7Cquynh.dang%40nist.gov%7Cb4f976b3d4314198e86708da80d86956%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637963964240554940%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000%7C%7C%7C&sdata=PW3EbcAAK02bM4QPKQBl%2FfcE7Nt5CGkzdtC46neUV00%3D&reserved=0

have not updates that document.)

4)Ask NIST to make hash-and-sign PQC
If they make one, it would be easy. (well.. I believe we should not assume that)

Regards Tadahiko

2022年8月18日(木) 4:41 Massimo, Jake <jakemas=40amazon.com@dmarc.ietf.org>:

Thanks Mike, Scott.

I've added to the github repo so we can track discussions on this topic https://github.com/
jakemas/draft-massimo-pq-pkix-00/issues/23

>> So it seems like the Dilithium designers explicitly want the hash to differ
>> across repeated attempts.
>>

> Hmmm, I don't see that in Dilithium; are they referring to the internal ExpandMask
function? That isn't applied to the input message.
>In any case, it's easy to derive SHAKE(M || 1), SHAKE(M || 2), ... without multiple passes
through M; you compute the partial SHAKE state after process M, and then apply that
partial state to 1, 2, ...

I think we are referring to different parts of the signing process here. For reference, my
security consideration was referring to page 4 of the Dilithium spec that states:
"Our full scheme in Fig. 4 also makes use of basic optimizations such as pre-hashing the
message M so as to not rehash it with every signing attempt." and Figure 4 itself.

It was my understanding that the signing procedure may need to be repeated several times
to produce a signature, and thus pre-hashing would prevent the need to individually hash
the input message with each attempt. I believe the desired differing of the hash you
mentioned is within the internals of the signing procedure and not on the input message
itself.

>> Third, I can imagine that some applications (like TLS) will want to use non-pre-hashed
versions of Dilithium and Falcon, but other applications (like code-signing) would prefer pre-
hashed versions. These are not interoperable with each other. Is NIST planning to produce
algorithm definitions, OIDs, Codepoints, etc, for both versions?

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 2 of 8

mailto:40amazon.com@dmarc.ietf.org
https://github.com/jakemas/draft-massimo-pq-pkix-00/issues/23
https://github.com/jakemas/draft-massimo-pq-pkix-00/issues/23

>Expanding on the code-signing example: the messages to be signed can be very large;
consider a several GB firmware image. Assuming our understanding below is correct, a
direct-sign algorithm would require the entire thing to be streamed to a network HSM for
signing and to a TPM for verification. Conversely code-signing environments often include
counter-signatures from Time Stamping Authorities which protect against future discovery
of collision attacks against the hash function -- as an example, Windows still accepts RSA-
SHA1 signatures produced before SHA1 was deprecated. I can imagine that the code-
signing community will decide that the performance gains of hash-then-sign outweigh the
security loss.

>So, will NIST standardize both direct-sign and some variant of hash-then-sign for PQC
signature primitives?

I do agree that there may be optimizations that users may wish to make dependent on the
context, i.e., hash-then-sign vs direct-sign. It's for this reason I tried to give an overview of
the security of each option in the draft, but ultimately leave that up to the user. It is a good
point regarding NISTs perspective on what should be explicitly standardized here.

>> This provides strong security against pre-computed
>> collision attacks since an attacker has no a-priori knowledge of `r` and
>> provides per-key hash-domain separation of the message to be signed.

>Rather, it limits the usability of any found collision to a specific public key; however it does
nothing to frustrate a collision attack against a specific public key.

Right, more details on the advantages of message binding on the PQC-forum from C.
Peikert's https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/eAaiJO1qzkA/m/
K66R_ftNBwA J. It was this discussion I was trying to encompass in the draft.

Cheers,
Jake

On 17/08/2022, 10:51, "'Scott Fluhrer (sfluhrer)' via pqc-forum" <pqc-forum@list.nist.gov>

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 3 of 8

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/eAaiJO1qzkA/m/K66R_ftNBwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/eAaiJO1qzkA/m/K66R_ftNBwAJ
mailto:pqc-forum@list.nist.gov

wrote:

CAUTION: This email originated from outside of the organization. Do not click links or open
attachments unless you can confirm the sender and know the content is safe.

> -----Original Message-----
> From: 'Mike Ounsworth' via pqc-forum <pqc-forum@list.nist.gov>
> Sent: Wednesday, August 17, 2022 1:27 PM
> To: 'LAMPS' <spasm@ietf.org>; cfrg@irtf.org; pqc-forum <pqc-
> forum@list.nist.gov>; jakemas@amazon.com; kpanos@amazon.com;
> sean@ssn3rd.com; bas@westerbaan.name
> Subject: [pqc-forum] Whether to hash-then-sign with Dilithium and Falcon?
>
> Hi Jake, Panos, Sean, Bas,
>
>
> We notice that your IETF draft-massimo-lamps-pq-sig-certificates-00 has the
> following security consideration:
>
> > Within the hash-then-sign paradigm, hash functions are used as a
> > domain restrictor over the message to be signed. By pre-hashing, the
> > onus of resistance to existential forgeries becomes heavily reliant on
> > the collision-resistance of the hash function in use. As well as this security
> goal, the hash-then-sign paradigm also has the ability to improve
> performance by reducing the size of signed messages. As a corollary, hashing
> remains mandatory even for short messages and assigns a further
> computational requirement onto the verifier. This makes the performance of
> hash-then-sign schemes more consistent, but not necessarily more efficient.
> > Dilithium diverges from the hash-then-sign paradigm by hashing the
> message during the signing procedure (at the point in which the challenge
> polynomial).
> > However, due to the fact that Dilithium signatures may require the
> > signing procedure to be repeated several times for a signature to be
> produced, Dilithium implementations can make use of pre-hashing the
> message to prevent rehashing with each attempt.

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 4 of 8

mailto:pqc-forum@list.nist.gov
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:forum@list.nist.gov
mailto:jakemas@amazon.com
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name

>
>
> First, quoting from the Dilithium NIST Round 3 submission documents:
>
> > Since our signing procedure may need to be repeated several times
> > until a signature is produced, we also append a counter in order to
> > make the SHAKE-256 output differ with each signing attempt of the same
> message.
>
> So it seems like the Dilithium designers explicitly want the hash to differ
> across repeated attempts.
>

Hmmm, I don't see that in Dilithium; are they referring to the internal ExpandMask
function? That isn't applied to the input message.

In any case, it's easy to derive SHAKE(M || 1), SHAKE(M || 2), ... without multiple passes
through M; you compute the partial SHAKE state after process M, and then apply that
partial state to 1, 2, ...

>
>
> Second, we had a similar discussion within the context of composite
> signatures when figuring out how to combine Dilithium and Falcon with
> ECDSA and RSA. We came out with a different conclusion; that hash-then-
> sign reduces the security properties of Dilithium and Falcon down to the
> collision resistance of the hash function used to pre-hash.
>
> We would like community opinion on this.
>
>
> Here's the Security Consideration text that we're working on:
>
>
>
>
> In the hash-then-sign paradigm, the message to be signed is hashed

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 5 of 8

> externally to the signature primitive, and then the hash value is signed.
>
> The hash-then-sign paradigm is required, for example, with RSA signatures in
> order to sign messages larger than the RSA modulus. Hash-then-sign also
> gives performance and bandwidth benefits, for example, when the signature
> is performed by a networked cryptographic appliance since you only need to
> send a small hash value rather than streaming the entire message.
>
> With Dilithium and Falcon signatures it is not recommended to pre-hash for
> the following reasons:
>
>
> The Dilithium construction includes
>
> ~~~
> Sign(sk,M):
> 10: mu \in {0, 1}^384 := CRH(tr || M)
> ~~~
>
> where `CRH` is any collision-resistant hash function and `tr` is a component
> of the secret key.

A hash of the public key, actually; see line 7 of the key generation process (which explicitly
computes it from the components of the public key) - Dilithium stores it in the private key so
the signer doesn't need to recompute it every time.

> This provides strong security against pre-computed
> collision attacks since an attacker has no a-priori knowledge of `r` and
> provides per-key hash-domain separation of the message to be signed.

Rather, it limits the usability of any found collision to a specific public key; however it does
nothing to frustrate a collision attack against a specific public key.

Now, it does probably add a constant factor to any attack that searches for a simultaneous
collision between the hash that RSA/ECDSA uses (without the prepend) and the hash that
Dilithium uses (with the known prepend) - I would hesitate to give a value to that constant
factor, but it is likely not large.

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 6 of 8

>
>
> The Falcon construction includes
>
> ~~~
> Sign (m, sk, beta^2):
> 1: r <- {0, 1}^320 uniformly
> 2: c <- HashToPoint(r || m, q, n)
> ~~~
>
> where `HashToPoint` is a SHAKE-256-based construct. This provides strong
> security against pre-computed collision attacks since an attacker has no a-
> priori knowledge of `r` and provides per-signature hash-domain separation
> of the message to be signed.
>
> If the message to be signed is pre-hashed, for example `m0 = SHA256(m)`
> and then m0 provided to Dilithium or Falcon to sign, then you have re-
> introduced the collision problem since two messages m1 and m2 where
> SHA256(m1) == SHA256(m2) hash value will result a single Falcon or Dilithium
> signature value which is simultaneously valid for both m1 and m2. This
> removes the extra collision resistance built in to the Dilithium and Falcon
> primitives and reduces it to the collision resistance strength of the underlying
> hash function. For this reason it is in general not recommended to pre-hash
> when using Dilithium or Falcon except in cases where the implementor is
> comfortable with this reduction in security.
>
> Therefore, for the purpose of interoperability of composite signatures,
> implementations MUST NOT pre-hash messages for Dilithium and Falcon. If
> pre-hashed versions of these signatures are desired, then separate signature
> algorithms will need to be defined.
>
>

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 7 of 8

To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/
pqc-forum/
CH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9%40CH0PR11MB5444.namprd11.prod.out
look.com.

CFRG mailing list
CFRG@irtf.org
https://www.irtf.org/mailman/listinfo/cfrg

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 8 of 8

mailto:pqc-forum%2Bunsubscribe@list.nist.gov
mailto:pqc-forum%2Bunsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9%40CH0PR11MB5444.namprd11.prod.outlook.com
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9%40CH0PR11MB5444.namprd11.prod.outlook.com
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9%40CH0PR11MB5444.namprd11.prod.outlook.com
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9%40CH0PR11MB5444.namprd11.prod.outlook.com
mailto:CFRG@irtf.org
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.irtf.org%2Fmailman%2Flistinfo%2Fcfrg&data=05%7C01%7Cquynh.dang%40nist.gov%7Cb4f976b3d4314198e86708da80d86956%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637963964240554940%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000%7C%7C%7C&sdata=sk5wACJXlaaHKO%2BMbcJDZHdHZkWNZnqkd7kxWCt7w6g%3D&reserved=0

From: John Gray <john.gray@entrust.com> via Spasm <spasm-bounces@ietf.org>
To: Tadahiko Ito <tadahiko.ito.public@gmail.com>, Massimo, Jake

<jakemas=40amazon.com@dmarc.ietf.org>
CC: Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>, Mike Ounsworth

<mike.ounsworth@entrust.com>, LAMPS <spasm@ietf.org>, cfrg@irtf.org, pqc-forum <pqc-
forum@list.nist.gov>, Kampanakis, Panos <kpanos@amazon.com>, sean@ssn3rd.com,
bas@westerbaan.name

Subject: Re: [lamps] [EXTERNAL] Re: [CFRG] [pqc-forum] RE: Whether to hash-then-sign with
Dilithium and Falcon?

Date: Thursday, August 18, 2022 11:30:11 AM ET
Attachments: ATT00001.txt

Thanks Tadahiko,

I read through your paper, and it covers exactly the usability issues we have come across! We
were wondering if it is possible to perform the specific hashing external to the server (which
could be an HSM as in your paper, or timestamp server, etc). For example, for Dilithium the
mu := CRH(tr || M) and for Falcon it would be c <- HashToPoint(r || m, q, n). Your paper
answers that question, it can be done for Falcon, but not Dilithium (without changing the
signature output). So part of our question is whether using a regular external Hash as we do
today for RSA and ECDSA (and what you call a boundary type B) somehow reduces the
security and we shouldn’t recommend it. We are interested in this because we are looking at
defining composite pairs or triples which combine existing signature algorithms like
RSAWithSHA256 and ECDSAWithSHA256 with Falcon or Dilithium. Having to change the
operational paradigm for an HSM or something like a timestamping server would result in
large amounts of data having to be piped across the internet for signatures (as you point out
in your paper).

For our composite signature use case it brings up similar questions. We can support a mode
where external hashing is done once, and then individually signed by the components (this
makes it much more efficient) both internally and externally for the HSM, timestamping, code
signing use-cases. However, in the case of Dilithium there would need to be two signature
modes Sig = Dilithium (Message) and the other would be Sig = Dilithium (HASH (Message)). I
don’t think that is necessarily a bad thing as long as it is standardized and secure.
Alternatively, we could support independent hashing for each component, but that gets
strange if you are doing an external hash for ECDSA, but then need to send the whole data for
Dilithium. We would likely have to end up supporting sending the whole data if external
hashing compromises security of the PQC composites, but then it is even more inefficient as

Page 1 of 10

mailto:john.gray@entrust.com
mailto:spasm-bounces@ietf.org
mailto:tadahiko.ito.public@gmail.com
mailto:jakemas=40amazon.com@dmarc.ietf.org
mailto:sfluhrer@cisco.com
mailto:mike.ounsworth@entrust.com
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name

Spasm mailing list

Spasm@ietf.org

https://www.ietf.org/mailman/listinfo/spasm

each component would need to hash independently. You also covers this in section 4.3 your
paper:

“We can construct type B cryptographic boundaries by adding one more hash function before
the execution of PQC’s signature generation algorithm… This approach would improve the
efficiency of lattice based digital signature schemes deployed in HSM. It would have a greater
impact on Dilithium, but also be applicable to Falcon and other digital signature schemes. Two
modes of PQC algorithms utilizing this approach will be able to exist, namely, a PQC algorithm
without an additional hash (i.e. original PQC algorithm) and a PQC algorithm with an
additional hash. If there are two modes of a digital signature scheme, then the asymmetric
operation for those two modes must not be identical. The reason is that, obtaining a signature
from the mode with an additional hash function would help attackers who can attack another
mode which is without the additional hash function.”

So for example, Mode1 = Dilithium(Message) and Mode2 = Dilithium (HASH (Message)) where
Mode1 is the original algorithm that does its own internal hashing, and Mode2 does an
additional hash externally before the original algorithms internal hash. Then you are saying
obtaining the signature from Mode2 would be able to attack Mode1? I don’t quite understand
that part. If you could explain how such an attack works in a bit more detail it would be
helpful.

I see you suggest mitigations by changing the Dilithium algorithm itself (section 4.3 of your
paper). Perhaps such mitigations could be considered by the standards bodies? Otherwise
switching from boundary type B (external hash then sign) to boundary type A (full message
signing) will be another major hurdle for the industry, adding additional complication and with
that possible bugs.

Thanks for sharing your paper with us Tadahiko and the valuable work you are doing!

John Gray

From: Spasm <spasm-bounces@ietf.org> On Behalf Of Tadahiko Ito
Sent: Thursday, August 18, 2022 1:12 AM
To: Massimo, Jake <jakemas=40amazon.com@dmarc.ietf.org>
Cc: Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>; Mike Ounsworth
<Mike.Ounsworth@entrust.com>; LAMPS <spasm@ietf.org>; cfrg@irtf.org; pqc-forum <pqc-
forum@list.nist.gov>; Kampanakis, Panos <kpanos@amazon.com>; sean@ssn3rd.com;
bas@westerbaan.name

John Gray <john.gray@entrust.com>

Page 2 of 10

Subject: [EXTERNAL] Re: [lamps] [CFRG] [pqc-forum] RE: Whether to hash-then-sign with
Dilithium and Falcon?

WARNING: This email originated outside of Entrust.
DO NOT CLICK links or attachments unless you trust the sender and know the content is safe.

> It was my understanding that the signing procedure may need to be

> repeated several times to produce a signature, and thus pre-hashing

> would prevent the need to individually hash the input message with

> each attempt.

When we were trying to implement PQC in functional module of HSM for our use case, It was pain. I

believe HSM vender will implement much better, but It may still have problem.

Hash then Sign was great that we can separate key management (and signing) function from data

management (and hashing) function. It seems crypto module producer might need to implement

scheduling function for data management function. I far those problems decrease efficiency, but we

might need to care that.

>> (…) Assuming our understanding below is correct, a direct-sign algorithm

>> would require the entire thing to be streamed to a network HSM for signing

>> and to a TPM for verification.

Currently, I am doubting that we might not have that many protocols with direct-signing algorithm

which would sign intolerable large data. For those protocol with direct-signing, I believe we can have

several approaches.

1)Sign to smaller compressed data (e.g. by using CMS) instead of raw data.

It was biggest feedback I got so far, when I told about those stuff on IETF last year.

For this option, Users may need to change data structure, but If we cannot find that much direct-

signing use case, it might be reasonable. Direct-signing use case holders may need to take other

option.

In addition, when I ask our engineer for our use case, he said that was long recognized issue, and it

might be good chance to do so.

2)Use pre-hash

Users do not need to change data structure, but we may meet interoperability challenge.

John Gray <john.gray@entrust.com>

Page 3 of 10

3)Separate PQC into key management function and data management function,

I tried, but I believe It was not good choice. <https://eprint.iacr.org/2020/990.pdf> (I am sorry that we

have not updates that document.)

4)Ask NIST to make hash-and-sign PQC

If they make one, it would be easy. (well.. I believe we should not assume that)

Regards Tadahiko

2022年8月18日(木) 4:41 Massimo, Jake <jakemas=40amazon.com@dmarc.ietf.org>:

Thanks Mike, Scott.

I've added to the github repo so we can track discussions on this topic https://github.com/
jakemas/draft-massimo-pq-pkix-00/issues/23

>> So it seems like the Dilithium designers explicitly want the hash to differ
>> across repeated attempts.
>>

> Hmmm, I don't see that in Dilithium; are they referring to the internal ExpandMask
function? That isn't applied to the input message.
>In any case, it's easy to derive SHAKE(M || 1), SHAKE(M || 2), ... without multiple passes
through M; you compute the partial SHAKE state after process M, and then apply that
partial state to 1, 2, ...

I think we are referring to different parts of the signing process here. For reference, my
security consideration was referring to page 4 of the Dilithium spec that states:
"Our full scheme in Fig. 4 also makes use of basic optimizations such as pre-hashing the
message M so as to not rehash it with every signing attempt." and Figure 4 itself.

It was my understanding that the signing procedure may need to be repeated several times
to produce a signature, and thus pre-hashing would prevent the need to individually hash
the input message with each attempt. I believe the desired differing of the hash you
mentioned is within the internals of the signing procedure and not on the input message
itself.

>> Third, I can imagine that some applications (like TLS) will want to use non-pre-hashed
versions of Dilithium and Falcon, but other applications (like code-signing) would prefer pre-

John Gray <john.gray@entrust.com>

Page 4 of 10

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Feprint.iacr.org%2F2020%2F990.pdf__%3B!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I0t97ACDg%24&data=05%7C01%7Cquynh.dang%40nist.gov%7C2b100908421040a7c67f08da812e8659%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637964334110413800%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=1eKMMFJgK%2BAmpxxAU%2FsJB%2BX97SO1nFbSZqBen6dYo40%3D&reserved=0
mailto:40amazon.com@dmarc.ietf.org
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgithub.com%2Fjakemas%2Fdraft-massimo-pq-pkix-00%2Fissues%2F23__%3B!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I24eQAyKQ%24&data=05%7C01%7Cquynh.dang%40nist.gov%7C2b100908421040a7c67f08da812e8659%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637964334110413800%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=S0UmhzPUdBV4MrDXkC49%2BK6TTeReRzcTs0K5RWwljkM%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgithub.com%2Fjakemas%2Fdraft-massimo-pq-pkix-00%2Fissues%2F23__%3B!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I24eQAyKQ%24&data=05%7C01%7Cquynh.dang%40nist.gov%7C2b100908421040a7c67f08da812e8659%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637964334110413800%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=S0UmhzPUdBV4MrDXkC49%2BK6TTeReRzcTs0K5RWwljkM%3D&reserved=0

hashed versions. These are not interoperable with each other. Is NIST planning to produce
algorithm definitions, OIDs, Codepoints, etc, for both versions?

>Expanding on the code-signing example: the messages to be signed can be very large;
consider a several GB firmware image. Assuming our understanding below is correct, a
direct-sign algorithm would require the entire thing to be streamed to a network HSM for
signing and to a TPM for verification. Conversely code-signing environments often include
counter-signatures from Time Stamping Authorities which protect against future discovery
of collision attacks against the hash function -- as an example, Windows still accepts RSA-
SHA1 signatures produced before SHA1 was deprecated. I can imagine that the code-signing
community will decide that the performance gains of hash-then-sign outweigh the security
loss.

>So, will NIST standardize both direct-sign and some variant of hash-then-sign for PQC
signature primitives?

I do agree that there may be optimizations that users may wish to make dependent on the
context, i.e., hash-then-sign vs direct-sign. It's for this reason I tried to give an overview of
the security of each option in the draft, but ultimately leave that up to the user. It is a good
point regarding NISTs perspective on what should be explicitly standardized here.

>> This provides strong security against pre-computed
>> collision attacks since an attacker has no a-priori knowledge of `r` and
>> provides per-key hash-domain separation of the message to be signed.

>Rather, it limits the usability of any found collision to a specific public key; however it does
nothing to frustrate a collision attack against a specific public key.

Right, more details on the advantages of message binding on the PQC-forum from C.
Peikert's https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/eAaiJO1qzkA/m/
K66R_ftNBwA J. It was this discussion I was trying to encompass in the draft.

Cheers,
Jake

John Gray <john.gray@entrust.com>

Page 5 of 10

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fg%2Fpqc-forum%2Fc%2FeAaiJO1qzkA%2Fm%2FK66R_ftNBwAJ__%3B!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I3Ss-WnXA%24&data=05%7C01%7Cquynh.dang%40nist.gov%7C2b100908421040a7c67f08da812e8659%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637964334110413800%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=reGxTlikDQnIv69pOp5VVgWmDdBLaHHt2v5P1zqhbgM%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fg%2Fpqc-forum%2Fc%2FeAaiJO1qzkA%2Fm%2FK66R_ftNBwAJ__%3B!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I3Ss-WnXA%24&data=05%7C01%7Cquynh.dang%40nist.gov%7C2b100908421040a7c67f08da812e8659%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637964334110413800%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=reGxTlikDQnIv69pOp5VVgWmDdBLaHHt2v5P1zqhbgM%3D&reserved=0

On 17/08/2022, 10:51, "'Scott Fluhrer (sfluhrer)' via pqc-forum" <pqc-forum@list.nist.gov>
wrote:

CAUTION: This email originated from outside of the organization. Do not click links or open
attachments unless you can confirm the sender and know the content is safe.

> -----Original Message-----
> From: 'Mike Ounsworth' via pqc-forum <pqc-forum@list.nist.gov>
> Sent: Wednesday, August 17, 2022 1:27 PM
> To: 'LAMPS' <spasm@ietf.org>; cfrg@irtf.org; pqc-forum <pqc-
> forum@list.nist.gov>; jakemas@amazon.com; kpanos@amazon.com;
> sean@ssn3rd.com; bas@westerbaan.name
> Subject: [pqc-forum] Whether to hash-then-sign with Dilithium and Falcon?
>
> Hi Jake, Panos, Sean, Bas,
>
>
> We notice that your IETF draft-massimo-lamps-pq-sig-certificates-00 has the
> following security consideration:
>
> > Within the hash-then-sign paradigm, hash functions are used as a
> > domain restrictor over the message to be signed. By pre-hashing, the
> > onus of resistance to existential forgeries becomes heavily reliant on
> > the collision-resistance of the hash function in use. As well as this security
> goal, the hash-then-sign paradigm also has the ability to improve
> performance by reducing the size of signed messages. As a corollary, hashing
> remains mandatory even for short messages and assigns a further
> computational requirement onto the verifier. This makes the performance of
> hash-then-sign schemes more consistent, but not necessarily more efficient.
> > Dilithium diverges from the hash-then-sign paradigm by hashing the
> message during the signing procedure (at the point in which the challenge
> polynomial).
> > However, due to the fact that Dilithium signatures may require the
> > signing procedure to be repeated several times for a signature to be

John Gray <john.gray@entrust.com>

Page 6 of 10

mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:forum@list.nist.gov
mailto:jakemas@amazon.com
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name

> produced, Dilithium implementations can make use of pre-hashing the
> message to prevent rehashing with each attempt.
>
>
> First, quoting from the Dilithium NIST Round 3 submission documents:
>
> > Since our signing procedure may need to be repeated several times
> > until a signature is produced, we also append a counter in order to
> > make the SHAKE-256 output differ with each signing attempt of the same
> message.
>
> So it seems like the Dilithium designers explicitly want the hash to differ
> across repeated attempts.
>

Hmmm, I don't see that in Dilithium; are they referring to the internal ExpandMask
function? That isn't applied to the input message.

In any case, it's easy to derive SHAKE(M || 1), SHAKE(M || 2), ... without multiple passes
through M; you compute the partial SHAKE state after process M, and then apply that
partial state to 1, 2, ...

>
>
> Second, we had a similar discussion within the context of composite
> signatures when figuring out how to combine Dilithium and Falcon with
> ECDSA and RSA. We came out with a different conclusion; that hash-then-
> sign reduces the security properties of Dilithium and Falcon down to the
> collision resistance of the hash function used to pre-hash.
>
> We would like community opinion on this.
>
>
> Here's the Security Consideration text that we're working on:
>
>
>

John Gray <john.gray@entrust.com>

Page 7 of 10

>
> In the hash-then-sign paradigm, the message to be signed is hashed
> externally to the signature primitive, and then the hash value is signed.
>
> The hash-then-sign paradigm is required, for example, with RSA signatures in
> order to sign messages larger than the RSA modulus. Hash-then-sign also
> gives performance and bandwidth benefits, for example, when the signature
> is performed by a networked cryptographic appliance since you only need to
> send a small hash value rather than streaming the entire message.
>
> With Dilithium and Falcon signatures it is not recommended to pre-hash for
> the following reasons:
>
>
> The Dilithium construction includes
>
> ~~~
> Sign(sk,M):
> 10: mu \in {0, 1}^384 := CRH(tr || M)
> ~~~
>
> where `CRH` is any collision-resistant hash function and `tr` is a component
> of the secret key.

A hash of the public key, actually; see line 7 of the key generation process (which explicitly
computes it from the components of the public key) - Dilithium stores it in the private key so
the signer doesn't need to recompute it every time.

> This provides strong security against pre-computed
> collision attacks since an attacker has no a-priori knowledge of `r` and
> provides per-key hash-domain separation of the message to be signed.

Rather, it limits the usability of any found collision to a specific public key; however it does
nothing to frustrate a collision attack against a specific public key.

Now, it does probably add a constant factor to any attack that searches for a simultaneous
collision between the hash that RSA/ECDSA uses (without the prepend) and the hash that

John Gray <john.gray@entrust.com>

Page 8 of 10

Dilithium uses (with the known prepend) - I would hesitate to give a value to that constant
factor, but it is likely not large.

>
>
> The Falcon construction includes
>
> ~~~
> Sign (m, sk, beta^2):
> 1: r <- {0, 1}^320 uniformly
> 2: c <- HashToPoint(r || m, q, n)
> ~~~
>
> where `HashToPoint` is a SHAKE-256-based construct. This provides strong
> security against pre-computed collision attacks since an attacker has no a-
> priori knowledge of `r` and provides per-signature hash-domain separation
> of the message to be signed.
>
> If the message to be signed is pre-hashed, for example `m0 = SHA256(m)`
> and then m0 provided to Dilithium or Falcon to sign, then you have re-
> introduced the collision problem since two messages m1 and m2 where
> SHA256(m1) == SHA256(m2) hash value will result a single Falcon or Dilithium
> signature value which is simultaneously valid for both m1 and m2. This
> removes the extra collision resistance built in to the Dilithium and Falcon
> primitives and reduces it to the collision resistance strength of the underlying
> hash function. For this reason it is in general not recommended to pre-hash
> when using Dilithium or Falcon except in cases where the implementor is
> comfortable with this reduction in security.
>
> Therefore, for the purpose of interoperability of composite signatures,
> implementations MUST NOT pre-hash messages for Dilithium and Falcon. If
> pre-hashed versions of these signatures are desired, then separate signature
> algorithms will need to be defined.
>
>

--

John Gray <john.gray@entrust.com>

Page 9 of 10

You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/
pqc-forum/
CH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9%40CH0PR11MB5444.namprd11.prod.outl
ook.com.

CFRG mailing list
CFRG@irtf.org
https://www.irtf.org/mailman/listinfo/cfrg

Any email and files/attachments transmitted with it are confidential and are intended solely for the
use of the individual or entity to whom they are addressed. If this message has been sent to you in
error, you must not copy, distribute or disclose of the information it contains. Please notify Entrust
immediately and delete the message from your system.

John Gray <john.gray@entrust.com>

Page 10 of 10

mailto:pqc-forum%2Bunsubscribe@list.nist.gov
mailto:pqc-forum%2Bunsubscribe@list.nist.gov
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FCH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9*40CH0PR11MB5444.namprd11.prod.outlook.com__%3BJQ!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I11e9Ce6Q%24&data=05%7C01%7Cquynh.dang%40nist.gov%7C2b100908421040a7c67f08da812e8659%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637964334110572493%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=VIGNFTe%2B2iKOzYboX3OH6CSTg6ou5AZlw5ysVlLGdxI%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FCH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9*40CH0PR11MB5444.namprd11.prod.outlook.com__%3BJQ!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I11e9Ce6Q%24&data=05%7C01%7Cquynh.dang%40nist.gov%7C2b100908421040a7c67f08da812e8659%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637964334110572493%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=VIGNFTe%2B2iKOzYboX3OH6CSTg6ou5AZlw5ysVlLGdxI%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FCH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9*40CH0PR11MB5444.namprd11.prod.outlook.com__%3BJQ!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I11e9Ce6Q%24&data=05%7C01%7Cquynh.dang%40nist.gov%7C2b100908421040a7c67f08da812e8659%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637964334110572493%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=VIGNFTe%2B2iKOzYboX3OH6CSTg6ou5AZlw5ysVlLGdxI%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FCH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9*40CH0PR11MB5444.namprd11.prod.outlook.com__%3BJQ!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I11e9Ce6Q%24&data=05%7C01%7Cquynh.dang%40nist.gov%7C2b100908421040a7c67f08da812e8659%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637964334110572493%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=VIGNFTe%2B2iKOzYboX3OH6CSTg6ou5AZlw5ysVlLGdxI%3D&reserved=0
mailto:CFRG@irtf.org
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fwww.irtf.org%2Fmailman%2Flistinfo%2Fcfrg__%3B!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I1sWJs08w%24&data=05%7C01%7Cquynh.dang%40nist.gov%7C2b100908421040a7c67f08da812e8659%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637964334110583003%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=Zjjn4ohcC5D6uHY%2BHCNka5Od3AtnoHY2zLYYxfmaaOo%3D&reserved=0

From: Phillip Hallam-Baker <phill@hallambaker.com> via pqc-forum@list.nist.gov
To: John Gray <john.gray=40entrust.com@dmarc.ietf.org>
CC: Tadahiko Ito <tadahiko.ito.public@gmail.com>, Massimo, Jake

<jakemas=40amazon.com@dmarc.ietf.org>, Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>, Mike
Ounsworth <mike.ounsworth@entrust.com>, LAMPS <spasm@ietf.org>, cfrg@irtf.org, pqc-forum
<pqc-forum@list.nist.gov>, Kampanakis, Panos <kpanos@amazon.com>, sean@ssn3rd.com,
bas@westerbaan.name

Subject: Re: [lamps] [EXTERNAL] Re: [CFRG] [pqc-forum] RE: Whether to hash-then-sign with Dilithium and
Falcon?

Date: Thursday, August 18, 2022 11:29:39 PM ET

On Thu, Aug 18, 2022 at 11:29 AM John Gray <John.Gray=40entrust.com@dmarc.ietf.org>
wrote:

Thanks Tadahiko,

I read through your paper, and it covers exactly the usability issues we have come across!
We were wondering if it is possible to perform the specific hashing external to the server
(which could be an HSM as in your paper, or timestamp server, etc). For example, for
Dilithium the mu := CRH(tr || M) and for Falcon it would be c <- HashToPoint(r || m, q, n).
Your paper answers that question, it can be done for Falcon, but not Dilithium (without
changing the signature output). So part of our question is whether using a regular external
Hash as we do today for RSA and ECDSA (and what you call a boundary type B) somehow
reduces the security and we shouldn’t recommend it. We are interested in this because we
are looking at defining composite pairs or triples which combine existing signature
algorithms like RSAWithSHA256 and ECDSAWithSHA256 with Falcon or Dilithium. Having to
change the operational paradigm for an HSM or something like a timestamping server
would result in large amounts of data having to be piped across the internet for signatures
(as you point out in your paper).

For our composite signature use case it brings up similar questions. We can support a mode
where external hashing is done once, and then individually signed by the components (this
makes it much more efficient) both internally and externally for the HSM, timestamping,
code signing use-cases. However, in the case of Dilithium there would need to be two
signature modes Sig = Dilithium (Message) and the other would be Sig = Dilithium (HASH
(Message)). I don’t think that is necessarily a bad thing as long as it is standardized and
secure. Alternatively, we could support independent hashing for each component, but that
gets strange if you are doing an external hash for ECDSA, but then need to send the whole

Page 1 of 2

mailto:phill@hallambaker.com
mailto:pqc-forum@list.nist.gov
mailto:john.gray=40entrust.com@dmarc.ietf.org
mailto:tadahiko.ito.public@gmail.com
mailto:jakemas=40amazon.com@dmarc.ietf.org
mailto:sfluhrer@cisco.com
mailto:mike.ounsworth@entrust.com
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name
mailto:40entrust.com@dmarc.ietf.org

data for Dilithium. We would likely have to end up supporting sending the whole data if
external hashing compromises security of the PQC composites, but then it is even more
inefficient as each component would need to hash independently. You also covers this in
section 4.3 your paper:

“We can construct type B cryptographic boundaries by adding one more hash function
before the execution of PQC’s signature generation algorithm… This approach would
improve the efficiency of lattice based digital signature schemes deployed in HSM. It would
have a greater impact on Dilithium, but also be applicable to Falcon and other digital
signature schemes. Two modes of PQC algorithms utilizing this approach will be able to
exist, namely, a PQC algorithm without an additional hash (i.e. original PQC algorithm) and a
PQC algorithm with an additional hash. If there are two modes of a digital signature
scheme, then the asymmetric operation for those two modes must not be identical. The
reason is that, obtaining a signature from the mode with an additional hash function would
help attackers who can attack another mode which is without the additional hash function.”

That is not a new issue and it is one that we discussed at great length for RSA. The hash of the digest is
part of the signature payload to prevent substitution attacks.

I am finding the description of the problem here to be making assumptions about what 'formal proofs'
are demonstrating that are probably demonstrating something else. If you assume there is only one true
digest function, you 'solve' the digest substitution problem by pretending it does not exist...

In my view, the signature function should be over the payload and the additional authenticated data.
Whether this is the OID of the digest algorithm alone or something more depends on the signature
scheme. That is what JOSE etc. have to sort out.

Preventing a digest downgrade attack may be considered the concern of the cryptographic envelope
format because there may be more than one form of downgrade attack to be considered. But it is also
something we have traditionally included in the signature...

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/
CAMm%2BLwiCxwv6smMSL4u%2B3dnBYWDkStE4pBXh25GKAuaVj%2Bnehg%40mail.gmail.co
m.

Phillip Hallam-Baker <phill@hallambaker.com>

Page 2 of 2

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwiCxwv6smMSL4u%2B3dnBYWDkStE4pBXh25GKAuaVj%2Bnehg%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwiCxwv6smMSL4u%2B3dnBYWDkStE4pBXh25GKAuaVj%2Bnehg%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwiCxwv6smMSL4u%2B3dnBYWDkStE4pBXh25GKAuaVj%2Bnehg%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwiCxwv6smMSL4u%2B3dnBYWDkStE4pBXh25GKAuaVj%2Bnehg%40mail.gmail.com?utm_medium=email&utm_source=footer

From: Mike Ounsworth <mike.ounsworth@entrust.com> via pqc-forum <pqc-forum@list.nist.gov>
To: Phillip Hallam-Baker <phill@hallambaker.com>, John Gray

<john.gray=40entrust.com@dmarc.ietf.org>
CC: Tadahiko Ito <tadahiko.ito.public@gmail.com>, Massimo, Jake

<jakemas=40amazon.com@dmarc.ietf.org>, Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>, LAMPS
<spasm@ietf.org>, cfrg@irtf.org, pqc-forum <pqc-forum@list.nist.gov>, Kampanakis, Panos
<kpanos@amazon.com>, sean@ssn3rd.com, bas@westerbaan.name

Subject: RE: [lamps] [EXTERNAL] Re: [CFRG] [pqc-forum] RE: Whether to hash-then-sign with Dilithium and
Falcon?

Date: Friday, August 19, 2022 01:56:22 PM ET

Phillip,

> That is not a new issue and it is one that we discussed at great length for RSA. The hash of
the digest is part of the signature payload to prevent substitution attacks.

I think you are in fact mistaking the problem that we’re trying to solve / trying not to un-solve.
Nobody is suggesting hash downgrade or substitution attacks. As you point out, that is
already solved by existing protocols.

Taking Falcon as an example, the problem as I understand it is that the first internal step of
Falcon is:

Sign(m):

r = rand(320);

c = SHAKE(r || m);

…

output (r, s)

Verify(r, s, m):

c = SHAKE(r || m);

this has the nice property that `r` is generated at signing time by the signer. So should SHAKE
develop a collision attack similar to the one we saw for SHA1, then the collision pre-
computation as still intractable for the attacker because the attacker cannot not know `r` in
advance. (Disclaimer: I am just an engineer trying to wrap my head around this, corrections
welcome!).

Page 1 of 4

mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:phill@hallambaker.com
mailto:john.gray=40entrust.com@dmarc.ietf.org
mailto:tadahiko.ito.public@gmail.com
mailto:jakemas=40amazon.com@dmarc.ietf.org
mailto:sfluhrer@cisco.com
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name

So the concern with hash-then-sign is that if `m` above is itself a message digest, ie `m =
SHA256(M)`, then you have un-done the collision resistance that is built in to the Falcon
primitive, essentially reducing the security properties of Falcon. Adding the message digest to
the signed content does not help if the attacker is holding two messages with the same
SHA256 hash.

My simplified-to-the-point-of-being-wrong understanding is that this would be no worse than
what we do with RSA and therefore might be acceptable in some use cases, but it is also
ignoring cryptographic improvements beyond RSA.

Disclaimer: this whole email should be viewed as a question that we are seeking confirmation
of.

Mike Ounsworth

From: Phillip Hallam-Baker <phill@hallambaker.com>
Sent: August 18, 2022 10:29 PM
To: John Gray <John.Gray=40entrust.com@dmarc.ietf.org>
Cc: Tadahiko Ito <tadahiko.ito.public@gmail.com>; Massimo, Jake
<jakemas=40amazon.com@dmarc.ietf.org>; Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>;
Mike Ounsworth <Mike.Ounsworth@entrust.com>; LAMPS <spasm@ietf.org>; cfrg@irtf.org;
pqc-forum <pqc-forum@list.nist.gov>; Kampanakis, Panos <kpanos@amazon.com>;
sean@ssn3rd.com; bas@westerbaan.name
Subject: Re: [lamps] [EXTERNAL] Re: [CFRG] [pqc-forum] RE: Whether to hash-then-sign with
Dilithium and Falcon?

On Thu, Aug 18, 2022 at 11:29 AM John Gray <John.Gray=40entrust.com@dmarc.ietf.org>
wrote:

Thanks Tadahiko,

I read through your paper, and it covers exactly the usability issues we have come across!
We were wondering if it is possible to perform the specific hashing external to the server
(which could be an HSM as in your paper, or timestamp server, etc). For example, for
Dilithium the mu := CRH(tr || M) and for Falcon it would be c <- HashToPoint(r || m, q, n).
Your paper answers that question, it can be done for Falcon, but not Dilithium (without
changing the signature output). So part of our question is whether using a regular external
Hash as we do today for RSA and ECDSA (and what you call a boundary type B) somehow

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 2 of 4

mailto:40entrust.com@dmarc.ietf.org

reduces the security and we shouldn’t recommend it. We are interested in this because we
are looking at defining composite pairs or triples which combine existing signature
algorithms like RSAWithSHA256 and ECDSAWithSHA256 with Falcon or Dilithium. Having to
change the operational paradigm for an HSM or something like a timestamping server
would result in large amounts of data having to be piped across the internet for signatures
(as you point out in your paper).

For our composite signature use case it brings up similar questions. We can support a mode
where external hashing is done once, and then individually signed by the components (this
makes it much more efficient) both internally and externally for the HSM, timestamping,
code signing use-cases. However, in the case of Dilithium there would need to be two
signature modes Sig = Dilithium (Message) and the other would be Sig = Dilithium (HASH
(Message)). I don’t think that is necessarily a bad thing as long as it is standardized and
secure. Alternatively, we could support independent hashing for each component, but that
gets strange if you are doing an external hash for ECDSA, but then need to send the whole
data for Dilithium. We would likely have to end up supporting sending the whole data if
external hashing compromises security of the PQC composites, but then it is even more
inefficient as each component would need to hash independently. You also covers this in
section 4.3 your paper:

“We can construct type B cryptographic boundaries by adding one more hash function
before the execution of PQC’s signature generation algorithm… This approach would
improve the efficiency of lattice based digital signature schemes deployed in HSM. It would
have a greater impact on Dilithium, but also be applicable to Falcon and other digital
signature schemes. Two modes of PQC algorithms utilizing this approach will be able to
exist, namely, a PQC algorithm without an additional hash (i.e. original PQC algorithm) and a
PQC algorithm with an additional hash. If there are two modes of a digital signature
scheme, then the asymmetric operation for those two modes must not be identical. The
reason is that, obtaining a signature from the mode with an additional hash function would
help attackers who can attack another mode which is without the additional hash function.”

That is not a new issue and it is one that we discussed at great length for RSA. The hash of the
digest is part of the signature payload to prevent substitution attacks.

I am finding the description of the problem here to be making assumptions about what
'formal proofs' are demonstrating that are probably demonstrating something else. If you
assume there is only one true digest function, you 'solve' the digest substitution problem by
pretending it does not exist...

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 3 of 4

In my view, the signature function should be over the payload and the additional
authenticated data. Whether this is the OID of the digest algorithm alone or something more
depends on the signature scheme. That is what JOSE etc. have to sort out.

Preventing a digest downgrade attack may be considered the concern of the cryptographic
envelope format because there may be more than one form of downgrade attack to be
considered. But it is also something we have traditionally included in the signature...

Any email and files/attachments transmitted with it are confidential and are intended solely for the
use of the individual or entity to whom they are addressed. If this message has been sent to you in
error, you must not copy, distribute or disclose of the information it contains. Please notify Entrust
immediately and delete the message from your system.

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 4 of 4

From: Phillip Hallam-Baker <phill@hallambaker.com> via pqc-forum@list.nist.gov
To: Mike Ounsworth <mike.ounsworth@entrust.com>
CC: LAMPS <spasm@ietf.org>, cfrg@irtf.org, pqc-forum <pqc-forum@list.nist.gov>
Subject: Re: [lamps] [EXTERNAL] Re: [CFRG] [pqc-forum] RE: Whether to hash-then-sign with Dilithium and

Falcon?
Date: Friday, August 19, 2022 03:44:45 PM ET

On Fri, Aug 19, 2022 at 1:55 PM Mike Ounsworth <Mike.Ounsworth@entrust.com> wrote:

Phillip,

> That is not a new issue and it is one that we discussed at great length for RSA. The hash of
the digest is part of the signature payload to prevent substitution attacks.

I think you are in fact mistaking the problem that we’re trying to solve / trying not to un-
solve. Nobody is suggesting hash downgrade or substitution attacks. As you point out, that
is already solved by existing protocols.

Taking Falcon as an example, the problem as I understand it is that the first internal step of
Falcon is:

Sign(m):

r = rand(320);

c = SHAKE(r || m);

…

output (r, s)

Verify(r, s, m):

c = SHAKE(r || m);

Oh right. So far I am up the Kyber pass and have not done Dilithium yet.

this has the nice property that `r` is generated at signing time by the signer. So should
SHAKE develop a collision attack similar to the one we saw for SHA1, then the collision pre-
computation as still intractable for the attacker because the attacker cannot not know `r` in

Page 1 of 4

mailto:phill@hallambaker.com
mailto:pqc-forum@list.nist.gov
mailto:mike.ounsworth@entrust.com
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:Mike.Ounsworth@entrust.com

advance. (Disclaimer: I am just an engineer trying to wrap my head around this, corrections
welcome!).

Meh, seems like an unnecessary concern. And I am not sure how this actually helps against collision
attacks in general.

If SHAKE is broken, then we are going to have so many problems that the security of the signature
algorithm is irrelevant.

As a matter of protocol composition, the signature algorithm should not be trying to fix a potential issue
in the digest algorithm because things are going to be breaking all over.

So the concern with hash-then-sign is that if `m` above is itself a message digest, ie `m =
SHA256(M)`, then you have un-done the collision resistance that is built in to the Falcon
primitive, essentially reducing the security properties of Falcon. Adding the message digest
to the signed content does not help if the attacker is holding two messages with the same
SHA256 hash.

If this is a useful approach, then move it out of the signature primitive and push it into the envelope
format.

My simplified-to-the-point-of-being-wrong understanding is that this would be no worse
than what we do with RSA and therefore might be acceptable in some use cases, but it is
also ignoring cryptographic improvements beyond RSA.

Disclaimer: this whole email should be viewed as a question that we are seeking
confirmation of.

Mike Ounsworth

From: Phillip Hallam-Baker <phill@hallambaker.com>
Sent: August 18, 2022 10:29 PM
To: John Gray <John.Gray=40entrust.com@dmarc.ietf.org>
Cc: Tadahiko Ito <tadahiko.ito.public@gmail.com>; Massimo, Jake
<jakemas=40amazon.com@dmarc.ietf.org>; Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>;
Mike Ounsworth <Mike.Ounsworth@entrust.com>; LAMPS <spasm@ietf.org>; cfrg@irtf.org;
pqc-forum <pqc-forum@list.nist.gov>; Kampanakis, Panos <kpanos@amazon.com>;
sean@ssn3rd.com; bas@westerbaan.name
Subject: Re: [lamps] [EXTERNAL] Re: [CFRG] [pqc-forum] RE: Whether to hash-then-sign with
Dilithium and Falcon?

Phillip Hallam-Baker <phill@hallambaker.com>

Page 2 of 4

mailto:phill@hallambaker.com
mailto:40entrust.com@dmarc.ietf.org
mailto:tadahiko.ito.public@gmail.com
mailto:40amazon.com@dmarc.ietf.org
mailto:sfluhrer@cisco.com
mailto:Mike.Ounsworth@entrust.com
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name

On Thu, Aug 18, 2022 at 11:29 AM John Gray <John.Gray=40entrust.com@dmarc.ietf.org>
wrote:

Thanks Tadahiko,

I read through your paper, and it covers exactly the usability issues we have come across!
We were wondering if it is possible to perform the specific hashing external to the server
(which could be an HSM as in your paper, or timestamp server, etc). For example, for
Dilithium the mu := CRH(tr || M) and for Falcon it would be c <- HashToPoint(r || m, q, n).
Your paper answers that question, it can be done for Falcon, but not Dilithium (without
changing the signature output). So part of our question is whether using a regular
external Hash as we do today for RSA and ECDSA (and what you call a boundary type B)
somehow reduces the security and we shouldn’t recommend it. We are interested in this
because we are looking at defining composite pairs or triples which combine existing
signature algorithms like RSAWithSHA256 and ECDSAWithSHA256 with Falcon or
Dilithium. Having to change the operational paradigm for an HSM or something like a
timestamping server would result in large amounts of data having to be piped across the
internet for signatures (as you point out in your paper).

For our composite signature use case it brings up similar questions. We can support a
mode where external hashing is done once, and then individually signed by the
components (this makes it much more efficient) both internally and externally for the
HSM, timestamping, code signing use-cases. However, in the case of Dilithium there
would need to be two signature modes Sig = Dilithium (Message) and the other would be
Sig = Dilithium (HASH (Message)). I don’t think that is necessarily a bad thing as long as it
is standardized and secure. Alternatively, we could support independent hashing for each
component, but that gets strange if you are doing an external hash for ECDSA, but then
need to send the whole data for Dilithium. We would likely have to end up supporting
sending the whole data if external hashing compromises security of the PQC composites,
but then it is even more inefficient as each component would need to hash
independently. You also covers this in section 4.3 your paper:

“We can construct type B cryptographic boundaries by adding one more hash function
before the execution of PQC’s signature generation algorithm… This approach would
improve the efficiency of lattice based digital signature schemes deployed in HSM. It
would have a greater impact on Dilithium, but also be applicable to Falcon and other
digital signature schemes. Two modes of PQC algorithms utilizing this approach will be
able to exist, namely, a PQC algorithm without an additional hash (i.e. original PQC
algorithm) and a PQC algorithm with an additional hash. If there are two modes of a

Phillip Hallam-Baker <phill@hallambaker.com>

Page 3 of 4

mailto:40entrust.com@dmarc.ietf.org

digital signature scheme, then the asymmetric operation for those two modes must not
be identical. The reason is that, obtaining a signature from the mode with an additional
hash function would help attackers who can attack another mode which is without the
additional hash function.”

That is not a new issue and it is one that we discussed at great length for RSA. The hash of
the digest is part of the signature payload to prevent substitution attacks.

I am finding the description of the problem here to be making assumptions about what
'formal proofs' are demonstrating that are probably demonstrating something else. If you
assume there is only one true digest function, you 'solve' the digest substitution problem by
pretending it does not exist...

In my view, the signature function should be over the payload and the additional
authenticated data. Whether this is the OID of the digest algorithm alone or something
more depends on the signature scheme. That is what JOSE etc. have to sort out.

Preventing a digest downgrade attack may be considered the concern of the cryptographic
envelope format because there may be more than one form of downgrade attack to be
considered. But it is also something we have traditionally included in the signature...

Any email and files/attachments transmitted with it are confidential and are intended solely for
the use of the individual or entity to whom they are addressed. If this message has been sent to
you in error, you must not copy, distribute or disclose of the information it contains. Please notify
Entrust immediately and delete the message from your system.

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/CAMm%2BLwihTg8fC17SYLO-iPVj3ahxcaFBX-0mhtYZFMHkU_RtCA%40mail.gmail.com.

Phillip Hallam-Baker <phill@hallambaker.com>

Page 4 of 4

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwihTg8fC17SYLO-iPVj3ahxcaFBX-0mhtYZFMHkU_RtCA%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwihTg8fC17SYLO-iPVj3ahxcaFBX-0mhtYZFMHkU_RtCA%40mail.gmail.com?utm_medium=email&utm_source=footer

From: D. J. Bernstein <djb@cr.yp.to> via pqc-forum@list.nist.gov
To: pqc-forum@list.nist.gov, spasm@ietf.org, cfrg@irtf.org
Subject: [pqc-forum] Re: Whether to hash-then-sign with Dilithium and Falcon?
Date: Saturday, August 20, 2022 02:30:31 PM ET

Phillip Hallam-Baker writes:

> If this is a useful approach, then move it out of the signature

> primitive and push it into the envelope format.

Sure, people converting a signature system m |-> Sign(m) into a one-pass

signature system m |-> Sign(H(m)) can maybe be convinced to instead

convert it into a safer one-pass signature system m |-> r,Sign(H(r,m))

where r is chosen randomly at signing time. Both conversions are

generic, and the performance differences are minor.

But moving this _out_ of the underlying signature system is dangerous.

Applications will often expose the underlying signature system directly

to attackers. For example, an RSA HSM that returns h^d given h, trusting

the environment to choose h as a hash, is breakable by essentially the

attack of https://link.springer.com/article/10.1007/s00145-015-9205-5.

> If SHAKE is broken, then we are going to have so many problems that the

> security of the signature algorithm is irrelevant.

Certainly we'd like to end up in a world where everyone is using a hash

function that we can confidently assume is collision-resistant. However,

avoiding this assumption turns out to simplify security review:

 * Avoiding collision resistance means that cryptanalysts can avoid

 worrying about some important, hard-to-analyze attack avenues

 (e.g., what Wang dubbed "message modification").

 * Some components of security analyses can be computer-verified

 today, but (because of well-known formalization difficulties)

 assuming collision resistance creates problems for this.

 * In the opposite direction, the random r above creates its own

Page 1 of 3

mailto:djb@cr.yp.to
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:spasm@ietf.org
mailto:cfrg@irtf.org

 complications in security review, but looking at the details shows

 that these complications are _relatively_ easy to analyze.

Simplifying security review is important because the overall situation

in post-quantum cryptography is that security reviewers are terribly

overloaded. Compare, e.g., https://gcc02.safelinks.protection.outlook.com/?

url=https%3A%2F%2Feprint.iacr.org%2F2021%2F543&data=05%7C01%7Cyi-

kai.liu%40nist.gov%7C5395515a1400445d1e7e08da82da0e27%7C2ab5d82fd8fa4797a93e054655c61

dec%7C1%7C0%7C637966170308472940%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoi

V2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=SaOvjmCts7bxkgfWYZAZ

DJIbhT7dg1aqOJM1%2Bospzi8%3D&reserved=0 ("A decade

unscathed") to https://gcc02.safelinks.protection.outlook.com/?

url=https%3A%2F%2Feprint.iacr.org%2F2022%2F975&data=05%7C01%7Cyi-

kai.liu%40nist.gov%7C5395515a1400445d1e7e08da82da0e27%7C2ab5d82fd8fa4797a93e054655c61

dec%7C1%7C0%7C637966170308472940%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoi

V2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=INjAs2w4ZW9TYsa33Hsd

7JLNTgJjednr7BBjK9Q7ERA%3D&reserved=0. For many more examples

see https://gcc02.safelinks.protection.outlook.com/?

url=https%3A%2F%2Fntruprime.cr.yp.to%2Flatticerisks-20211031.pdf&data=05%7C01%7Cy

i-

kai.liu%40nist.gov%7C5395515a1400445d1e7e08da82da0e27%7C2ab5d82fd8fa4797a93e054655c61

dec%7C1%7C0%7C637966170308472940%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoi

V2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=0QYhvqU6D1hioYE%2B5x

qcFWBlaMex2Q6fFhgKvY%2Fgg%2F8%3D&reserved=0.

If a cryptosystem takes 10 unnecessary risks, each independently

incurring a 10% chance of disaster, then the cryptosystem has, overall,

a 65% chance (1-0.9^10) of disaster from these risks. Systematically

avoiding risks is much safer.

---D. J. Bernstein

--

You received this message because you are subscribed to the Google Groups "pqc-forum"

group.

D. J. Bernstein <djb@cr.yp.to>

Page 2 of 3

To unsubscribe from this group and stop receiving emails from it, send an email to

pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/

msgid/pqc-forum/20220820182908.232808.qmail%40cr.yp.to.

D. J. Bernstein <djb@cr.yp.to>

Page 3 of 3

From: Tadahiko Ito <tadahiko.ito.public@gmail.com> via Spasm <spasm-bounces@ietf.org>
To: John Gray <john.gray@entrust.com>
CC: LAMPS <spasm@ietf.org>, cfrg@irtf.org, pqc-forum <pqc-forum@list.nist.gov>
Subject: Re: [lamps] [EXTERNAL] Re: [CFRG] [pqc-forum] RE: Whether to hash-then-sign with

Dilithium and Falcon?
Date: Monday, August 22, 2022 01:43:43 PM ET
Attachments: ATT00001.txt

I was replying to an individual by mistake..

Hi John

I believe timestamp is good example of separating data control and key management, I am
not sure if it would be like

> timestamping server would result in large amounts of data having to be piped across the
internet for signatures

that.

I might be misunderstanding,,, but at least for RFC3161 timestamp,

to timestamp message M, timestamp client first calculate requesing-hash value (let say
Hash(M)) and send to timestamp server.

Upon timestamp server receive Hash(M), he concatenate some value, hash-then-sign, and
return. returning value would be something like... hash-then-sign(Hash(M)||TIME||etc...).

Data on Internet should be not that big. (data between timestamp server and (internal) HSM
should be small also).

I was just thinking that, above hash functions in "Hash()" and "hash-then-sign" can be different
one, and may introduce additional complexity, on migration.

Regards Tadahiko Ito

2022年8月19日(金) 0:03 John Gray <John.Gray@entrust.com>:

Thanks Tadahiko,

Page 1 of 11

mailto:tadahiko.ito.public@gmail.com
mailto:spasm-bounces@ietf.org
mailto:john.gray@entrust.com
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov

Spasm mailing list

Spasm@ietf.org

https://www.ietf.org/mailman/listinfo/spasm

mailto:John.Gray@entrust.com

I read through your paper, and it covers exactly the usability issues we have come across!
We were wondering if it is possible to perform the specific hashing external to the server
(which could be an HSM as in your paper, or timestamp server, etc). For example, for
Dilithium the mu := CRH(tr || M) and for Falcon it would be c <- HashToPoint(r || m, q, n).
Your paper answers that question, it can be done for Falcon, but not Dilithium (without
changing the signature output). So part of our question is whether using a regular external
Hash as we do today for RSA and ECDSA (and what you call a boundary type B) somehow
reduces the security and we shouldn’t recommend it. We are interested in this because we
are looking at defining composite pairs or triples which combine existing signature
algorithms like RSAWithSHA256 and ECDSAWithSHA256 with Falcon or Dilithium. Having to
change the operational paradigm for an HSM or something like a timestamping server
would result in large amounts of data having to be piped across the internet for signatures
(as you point out in your paper).

For our composite signature use case it brings up similar questions. We can support a mode
where external hashing is done once, and then individually signed by the components (this
makes it much more efficient) both internally and externally for the HSM, timestamping,
code signing use-cases. However, in the case of Dilithium there would need to be two
signature modes Sig = Dilithium (Message) and the other would be Sig = Dilithium (HASH
(Message)). I don’t think that is necessarily a bad thing as long as it is standardized and
secure. Alternatively, we could support independent hashing for each component, but that
gets strange if you are doing an external hash for ECDSA, but then need to send the whole
data for Dilithium. We would likely have to end up supporting sending the whole data if
external hashing compromises security of the PQC composites, but then it is even more
inefficient as each component would need to hash independently. You also covers this in
section 4.3 your paper:

“We can construct type B cryptographic boundaries by adding one more hash function
before the execution of PQC’s signature generation algorithm… This approach would
improve the efficiency of lattice based digital signature schemes deployed in HSM. It would
have a greater impact on Dilithium, but also be applicable to Falcon and other digital
signature schemes. Two modes of PQC algorithms utilizing this approach will be able to
exist, namely, a PQC algorithm without an additional hash (i.e. original PQC algorithm) and a
PQC algorithm with an additional hash. If there are two modes of a digital signature
scheme, then the asymmetric operation for those two modes must not be identical. The
reason is that, obtaining a signature from the mode with an additional hash function would
help attackers who can attack another mode which is without the additional hash function.”

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 2 of 11

So for example, Mode1 = Dilithium(Message) and Mode2 = Dilithium (HASH (Message))
where Mode1 is the original algorithm that does its own internal hashing, and Mode2 does
an additional hash externally before the original algorithms internal hash. Then you are
saying obtaining the signature from Mode2 would be able to attack Mode1? I don’t quite
understand that part. If you could explain how such an attack works in a bit more detail it
would be helpful.

I see you suggest mitigations by changing the Dilithium algorithm itself (section 4.3 of your
paper). Perhaps such mitigations could be considered by the standards bodies? Otherwise
switching from boundary type B (external hash then sign) to boundary type A (full message
signing) will be another major hurdle for the industry, adding additional complication and
with that possible bugs.

Thanks for sharing your paper with us Tadahiko and the valuable work you are doing!

John Gray

From: Spasm <spasm-bounces@ietf.org> On Behalf Of Tadahiko Ito
Sent: Thursday, August 18, 2022 1:12 AM
To: Massimo, Jake <jakemas=40amazon.com@dmarc.ietf.org>
Cc: Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>; Mike Ounsworth
<Mike.Ounsworth@entrust.com>; LAMPS <spasm@ietf.org>; cfrg@irtf.org; pqc-forum <pqc-
forum@list.nist.gov>; Kampanakis, Panos <kpanos@amazon.com>; sean@ssn3rd.com;
bas@westerbaan.name
Subject: [EXTERNAL] Re: [lamps] [CFRG] [pqc-forum] RE: Whether to hash-then-sign with
Dilithium and Falcon?

WARNING: This email originated outside of Entrust.
DO NOT CLICK links or attachments unless you trust the sender and know the content is
safe.

> It was my understanding that the signing procedure may need to be

> repeated several times to produce a signature, and thus pre-hashing

> would prevent the need to individually hash the input message with

> each attempt.

When we were trying to implement PQC in functional module of HSM for our use case, It was pain. I

believe HSM vender will implement much better, but It may still have problem.

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 3 of 11

mailto:spasm-bounces@ietf.org
mailto:40amazon.com@dmarc.ietf.org
mailto:sfluhrer@cisco.com
mailto:Mike.Ounsworth@entrust.com
mailto:spasm@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name

Hash then Sign was great that we can separate key management (and signing) function from data

management (and hashing) function. It seems crypto module producer might need to implement

scheduling function for data management function. I far those problems decrease efficiency, but we

might need to care that.

>> (…) Assuming our understanding below is correct, a direct-sign algorithm

>> would require the entire thing to be streamed to a network HSM for signing

>> and to a TPM for verification.

Currently, I am doubting that we might not have that many protocols with direct-signing algorithm

which would sign intolerable large data. For those protocol with direct-signing, I believe we can have

several approaches.

1)Sign to smaller compressed data (e.g. by using CMS) instead of raw data.

It was biggest feedback I got so far, when I told about those stuff on IETF last year.

For this option, Users may need to change data structure, but If we cannot find that much direct-

signing use case, it might be reasonable. Direct-signing use case holders may need to take other

option.

In addition, when I ask our engineer for our use case, he said that was long recognized issue, and it

might be good chance to do so.

2)Use pre-hash

Users do not need to change data structure, but we may meet interoperability challenge.

3)Separate PQC into key management function and data management function,

I tried, but I believe It was not good choice. <https://eprint.iacr.org/2020/990.pdf> (I am sorry that

we have not updates that document.)

4)Ask NIST to make hash-and-sign PQC

If they make one, it would be easy. (well.. I believe we should not assume that)

Regards Tadahiko

2022年8月18日(木) 4:41 Massimo, Jake <jakemas=40amazon.com@dmarc.ietf.org>:

Thanks Mike, Scott.

I've added to the github repo so we can track discussions on this topic https://github.com/
jakemas/draft-massimo-pq-pkix-00/issues/23

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 4 of 11

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Feprint.iacr.org%2F2020%2F990.pdf__%3B!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I0t97ACDg%24&data=05%7C01%7Cquynh.dang%40nist.gov%7Ccfceac8a8ad44296c91c08da8465d8ee%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637967870226049929%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=LaKGB5HK4ea%2BRFmnavhqVWUolyhLvhKSgHYlCunX6Ig%3D&reserved=0
mailto:40amazon.com@dmarc.ietf.org
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgithub.com%2Fjakemas%2Fdraft-massimo-pq-pkix-00%2Fissues%2F23__%3B!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I24eQAyKQ%24&data=05%7C01%7Cquynh.dang%40nist.gov%7Ccfceac8a8ad44296c91c08da8465d8ee%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637967870226049929%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=QDuCJadwMG8XgAwxdhLJLbKnlSIK6XH0DorB3FgpK5g%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgithub.com%2Fjakemas%2Fdraft-massimo-pq-pkix-00%2Fissues%2F23__%3B!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I24eQAyKQ%24&data=05%7C01%7Cquynh.dang%40nist.gov%7Ccfceac8a8ad44296c91c08da8465d8ee%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637967870226049929%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=QDuCJadwMG8XgAwxdhLJLbKnlSIK6XH0DorB3FgpK5g%3D&reserved=0

>> So it seems like the Dilithium designers explicitly want the hash to differ
>> across repeated attempts.
>>

> Hmmm, I don't see that in Dilithium; are they referring to the internal ExpandMask
function? That isn't applied to the input message.
>In any case, it's easy to derive SHAKE(M || 1), SHAKE(M || 2), ... without multiple
passes through M; you compute the partial SHAKE state after process M, and then apply
that partial state to 1, 2, ...

I think we are referring to different parts of the signing process here. For reference, my
security consideration was referring to page 4 of the Dilithium spec that states:
"Our full scheme in Fig. 4 also makes use of basic optimizations such as pre-hashing the
message M so as to not rehash it with every signing attempt." and Figure 4 itself.

It was my understanding that the signing procedure may need to be repeated several
times to produce a signature, and thus pre-hashing would prevent the need to
individually hash the input message with each attempt. I believe the desired differing of
the hash you mentioned is within the internals of the signing procedure and not on the
input message itself.

>> Third, I can imagine that some applications (like TLS) will want to use non-pre-hashed
versions of Dilithium and Falcon, but other applications (like code-signing) would prefer
pre-hashed versions. These are not interoperable with each other. Is NIST planning to
produce algorithm definitions, OIDs, Codepoints, etc, for both versions?

>Expanding on the code-signing example: the messages to be signed can be very large;
consider a several GB firmware image. Assuming our understanding below is correct, a
direct-sign algorithm would require the entire thing to be streamed to a network HSM for
signing and to a TPM for verification. Conversely code-signing environments often include
counter-signatures from Time Stamping Authorities which protect against future
discovery of collision attacks against the hash function -- as an example, Windows still
accepts RSA-SHA1 signatures produced before SHA1 was deprecated. I can imagine that
the code-signing community will decide that the performance gains of hash-then-sign
outweigh the security loss.

>So, will NIST standardize both direct-sign and some variant of hash-then-sign for PQC

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 5 of 11

signature primitives?

I do agree that there may be optimizations that users may wish to make dependent on
the context, i.e., hash-then-sign vs direct-sign. It's for this reason I tried to give an
overview of the security of each option in the draft, but ultimately leave that up to the
user. It is a good point regarding NISTs perspective on what should be explicitly
standardized here.

>> This provides strong security against pre-computed
>> collision attacks since an attacker has no a-priori knowledge of `r` and
>> provides per-key hash-domain separation of the message to be signed.

>Rather, it limits the usability of any found collision to a specific public key; however it
does nothing to frustrate a collision attack against a specific public key.

Right, more details on the advantages of message binding on the PQC-forum from C.
Peikert's https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/eAaiJO1qzkA/m/
K66R_ftNBwA J. It was this discussion I was trying to encompass in the draft.

Cheers,
Jake

On 17/08/2022, 10:51, "'Scott Fluhrer (sfluhrer)' via pqc-forum" <pqc-forum@list.nist.gov>
wrote:

CAUTION: This email originated from outside of the organization. Do not click links or
open attachments unless you can confirm the sender and know the content is safe.

> -----Original Message-----
> From: 'Mike Ounsworth' via pqc-forum <pqc-forum@list.nist.gov>
> Sent: Wednesday, August 17, 2022 1:27 PM
> To: 'LAMPS' <spasm@ietf.org>; cfrg@irtf.org; pqc-forum <pqc-

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 6 of 11

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fg%2Fpqc-forum%2Fc%2FeAaiJO1qzkA%2Fm%2FK66R_ftNBwAJ__%3B!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I3Ss-WnXA%24&data=05%7C01%7Cquynh.dang%40nist.gov%7Ccfceac8a8ad44296c91c08da8465d8ee%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637967870226049929%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=I13Li274NzeuVF5f5LjD4ir2QyazZq0BJiaAAeNksFk%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fg%2Fpqc-forum%2Fc%2FeAaiJO1qzkA%2Fm%2FK66R_ftNBwAJ__%3B!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I3Ss-WnXA%24&data=05%7C01%7Cquynh.dang%40nist.gov%7Ccfceac8a8ad44296c91c08da8465d8ee%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637967870226049929%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=I13Li274NzeuVF5f5LjD4ir2QyazZq0BJiaAAeNksFk%3D&reserved=0
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:spasm@ietf.org
mailto:cfrg@irtf.org

> forum@list.nist.gov>; jakemas@amazon.com; kpanos@amazon.com;
> sean@ssn3rd.com; bas@westerbaan.name
> Subject: [pqc-forum] Whether to hash-then-sign with Dilithium and Falcon?
>
> Hi Jake, Panos, Sean, Bas,
>
>
> We notice that your IETF draft-massimo-lamps-pq-sig-certificates-00 has the
> following security consideration:
>
> > Within the hash-then-sign paradigm, hash functions are used as a
> > domain restrictor over the message to be signed. By pre-hashing, the
> > onus of resistance to existential forgeries becomes heavily reliant on
> > the collision-resistance of the hash function in use. As well as this security
> goal, the hash-then-sign paradigm also has the ability to improve
> performance by reducing the size of signed messages. As a corollary, hashing
> remains mandatory even for short messages and assigns a further
> computational requirement onto the verifier. This makes the performance of
> hash-then-sign schemes more consistent, but not necessarily more efficient.
> > Dilithium diverges from the hash-then-sign paradigm by hashing the
> message during the signing procedure (at the point in which the challenge
> polynomial).
> > However, due to the fact that Dilithium signatures may require the
> > signing procedure to be repeated several times for a signature to be
> produced, Dilithium implementations can make use of pre-hashing the
> message to prevent rehashing with each attempt.
>
>
> First, quoting from the Dilithium NIST Round 3 submission documents:
>
> > Since our signing procedure may need to be repeated several times
> > until a signature is produced, we also append a counter in order to
> > make the SHAKE-256 output differ with each signing attempt of the same
> message.
>
> So it seems like the Dilithium designers explicitly want the hash to differ
> across repeated attempts.

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 7 of 11

mailto:forum@list.nist.gov
mailto:jakemas@amazon.com
mailto:kpanos@amazon.com
mailto:sean@ssn3rd.com
mailto:bas@westerbaan.name

>

Hmmm, I don't see that in Dilithium; are they referring to the internal ExpandMask
function? That isn't applied to the input message.

In any case, it's easy to derive SHAKE(M || 1), SHAKE(M || 2), ... without multiple passes
through M; you compute the partial SHAKE state after process M, and then apply that
partial state to 1, 2, ...

>
>
> Second, we had a similar discussion within the context of composite
> signatures when figuring out how to combine Dilithium and Falcon with
> ECDSA and RSA. We came out with a different conclusion; that hash-then-
> sign reduces the security properties of Dilithium and Falcon down to the
> collision resistance of the hash function used to pre-hash.
>
> We would like community opinion on this.
>
>
> Here's the Security Consideration text that we're working on:
>
>
>
>
> In the hash-then-sign paradigm, the message to be signed is hashed
> externally to the signature primitive, and then the hash value is signed.
>
> The hash-then-sign paradigm is required, for example, with RSA signatures in
> order to sign messages larger than the RSA modulus. Hash-then-sign also
> gives performance and bandwidth benefits, for example, when the signature
> is performed by a networked cryptographic appliance since you only need to
> send a small hash value rather than streaming the entire message.
>
> With Dilithium and Falcon signatures it is not recommended to pre-hash for
> the following reasons:
>

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 8 of 11

>
> The Dilithium construction includes
>
> ~~~
> Sign(sk,M):
> 10: mu \in {0, 1}^384 := CRH(tr || M)
> ~~~
>
> where `CRH` is any collision-resistant hash function and `tr` is a component
> of the secret key.

A hash of the public key, actually; see line 7 of the key generation process (which explicitly
computes it from the components of the public key) - Dilithium stores it in the private key
so the signer doesn't need to recompute it every time.

> This provides strong security against pre-computed
> collision attacks since an attacker has no a-priori knowledge of `r` and
> provides per-key hash-domain separation of the message to be signed.

Rather, it limits the usability of any found collision to a specific public key; however it does
nothing to frustrate a collision attack against a specific public key.

Now, it does probably add a constant factor to any attack that searches for a
simultaneous collision between the hash that RSA/ECDSA uses (without the prepend) and
the hash that Dilithium uses (with the known prepend) - I would hesitate to give a value to
that constant factor, but it is likely not large.

>
>
> The Falcon construction includes
>
> ~~~
> Sign (m, sk, beta^2):
> 1: r <- {0, 1}^320 uniformly
> 2: c <- HashToPoint(r || m, q, n)
> ~~~
>

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 9 of 11

> where `HashToPoint` is a SHAKE-256-based construct. This provides strong
> security against pre-computed collision attacks since an attacker has no a-
> priori knowledge of `r` and provides per-signature hash-domain separation
> of the message to be signed.
>
> If the message to be signed is pre-hashed, for example `m0 = SHA256(m)`
> and then m0 provided to Dilithium or Falcon to sign, then you have re-
> introduced the collision problem since two messages m1 and m2 where
> SHA256(m1) == SHA256(m2) hash value will result a single Falcon or Dilithium
> signature value which is simultaneously valid for both m1 and m2. This
> removes the extra collision resistance built in to the Dilithium and Falcon
> primitives and reduces it to the collision resistance strength of the underlying
> hash function. For this reason it is in general not recommended to pre-hash
> when using Dilithium or Falcon except in cases where the implementor is
> comfortable with this reduction in security.
>
> Therefore, for the purpose of interoperability of composite signatures,
> implementations MUST NOT pre-hash messages for Dilithium and Falcon. If
> pre-hashed versions of these signatures are desired, then separate signature
> algorithms will need to be defined.
>
>

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/
pqc-forum/
CH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9%40CH0PR11MB5444.namprd11.prod.o
utlook.com.

CFRG mailing list
CFRG@irtf.org
https://www.irtf.org/mailman/listinfo/cfrg

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 10 of 11

mailto:pqc-forum%2Bunsubscribe@list.nist.gov
mailto:pqc-forum%2Bunsubscribe@list.nist.gov
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FCH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9*40CH0PR11MB5444.namprd11.prod.outlook.com__%3BJQ!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I11e9Ce6Q%24&data=05%7C01%7Cquynh.dang%40nist.gov%7Ccfceac8a8ad44296c91c08da8465d8ee%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637967870226049929%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=wXAZ7qHNcBqMnM1nHPMS3Eg091X2mUWfnsBv5B1BhjE%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FCH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9*40CH0PR11MB5444.namprd11.prod.outlook.com__%3BJQ!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I11e9Ce6Q%24&data=05%7C01%7Cquynh.dang%40nist.gov%7Ccfceac8a8ad44296c91c08da8465d8ee%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637967870226049929%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=wXAZ7qHNcBqMnM1nHPMS3Eg091X2mUWfnsBv5B1BhjE%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FCH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9*40CH0PR11MB5444.namprd11.prod.outlook.com__%3BJQ!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I11e9Ce6Q%24&data=05%7C01%7Cquynh.dang%40nist.gov%7Ccfceac8a8ad44296c91c08da8465d8ee%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637967870226049929%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=wXAZ7qHNcBqMnM1nHPMS3Eg091X2mUWfnsBv5B1BhjE%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FCH0PR11MB5444B9D3A0CB6E447A2FA3E5C16A9*40CH0PR11MB5444.namprd11.prod.outlook.com__%3BJQ!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I11e9Ce6Q%24&data=05%7C01%7Cquynh.dang%40nist.gov%7Ccfceac8a8ad44296c91c08da8465d8ee%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637967870226049929%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=wXAZ7qHNcBqMnM1nHPMS3Eg091X2mUWfnsBv5B1BhjE%3D&reserved=0
mailto:CFRG@irtf.org
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fwww.irtf.org%2Fmailman%2Flistinfo%2Fcfrg__%3B!!FJ-Y8qCqXTj2!dfr57dO6T_EyraXf4njCpckiogK-s2TOWWgvTT-2Eyw9R2mHDc4zeC42LyxdLY-_V9U98BBz_Xqd2XROZRiYaqxc0I1sWJs08w%24&data=05%7C01%7Cquynh.dang%40nist.gov%7Ccfceac8a8ad44296c91c08da8465d8ee%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637967870226049929%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=4d9ntB8hj0DoU%2BbltyAN5EAnx3BC0jCBxMRiaaBPK4A%3D&reserved=0

Any email and files/attachments transmitted with it are confidential and are intended solely for
the use of the individual or entity to whom they are addressed. If this message has been sent to
you in error, you must not copy, distribute or disclose of the information it contains. Please notify
Entrust immediately and delete the message from your system.

Tadahiko Ito <tadahiko.ito.public@gmail.com>

Page 11 of 11

	1. 2022-08-17 13:27- Mike Ounsworth
	2. 2022-08-17 13:50- Scott Fluhrer (sfluhrer)
	3. 2022-08-17 14:42- Mike Ounsworth
	4. 2022-08-17 15:40- Massimo, Jake
	5. 2022-08-18 01:13- Tadahiko Ito
	6. 2022-08-18 11:30- John Gray
	7. 2022-08-18 23:29- Phillip Hallam-Baker
	8. 2022-08-19 13:56- Mike Ounsworth
	9. 2022-08-19 15:44- Phillip Hallam-Baker
	10. 2022-08-20 14:30- D. J. Bernstein
	11. 2022-08-22 13:43- Tadahiko Ito

